• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
      • Truth
      • Ubdds
      • Bdd
      • Faig
        • Faig-constructors
        • Faig-onoff-equiv
        • Faig-purebool-p
        • Faig-alist-equiv
        • Faig-equiv
        • Faig-eval
        • Faig-restrict
        • Faig-fix
        • Faig-partial-eval
        • Faig-compose
        • Faig-compose-alist
          • Faig-compose-alist-thms
          • Patbind-faig
          • Faig-constants
        • Bed
        • 4v
      • Projects
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Faig-compose-alist

    Faig-compose-alist-thms

    Basic theorems about faig-compose-alist.

    Definitions and Theorems

    Theorem: faig-eval-alist-of-faig-compose-alist

    (defthm faig-eval-alist-of-faig-compose-alist
      (equal (faig-eval-alist (faig-compose-alist x al1)
                              al2)
             (faig-eval-alist x (aig-eval-alist al1 al2))))

    Theorem: lookup-in-faig-compose-alist

    (defthm lookup-in-faig-compose-alist
      (equal (hons-assoc-equal k (faig-compose-alist x env))
             (and (hons-assoc-equal k x)
                  (cons k
                        (faig-compose (cdr (hons-assoc-equal k x))
                                      env)))))

    Theorem: faig-alist-equiv-implies-faig-alist-equiv-faig-compose-alist-1

    (defthm
         faig-alist-equiv-implies-faig-alist-equiv-faig-compose-alist-1
      (implies (faig-alist-equiv x x-equiv)
               (faig-alist-equiv (faig-compose-alist x al)
                                 (faig-compose-alist x-equiv al)))
      :rule-classes (:congruence))

    Theorem: aig-alist-equiv-implies-faig-alist-equiv-faig-compose-alist-2

    (defthm
          aig-alist-equiv-implies-faig-alist-equiv-faig-compose-alist-2
      (implies (aig-alist-equiv al al-equiv)
               (faig-alist-equiv (faig-compose-alist x al)
                                 (faig-compose-alist x al-equiv)))
      :rule-classes (:congruence))

    Theorem: alist-equiv-implies-equal-faig-compose-alist-2

    (defthm alist-equiv-implies-equal-faig-compose-alist-2
      (implies (alist-equiv env env-equiv)
               (equal (faig-compose-alist x env)
                      (faig-compose-alist x env-equiv)))
      :rule-classes (:congruence))