Lifting of the circuit to a predicate.
Theorem:
(defthm boolean-assert-neq-pred-suff (implies (and (pfield::fep z prime) (and (boolean-neq-pred x y z prime) (boolean-assert-true-pred z prime))) (boolean-assert-neq-pred x y prime)))
Theorem:
(defthm definition-satp-to-boolean-assert-neq-pred (implies (and (equal (pfcs::lookup-definition '(:simple "boolean_assert_neq") pfcs::defs) '(:definition (name :simple "boolean_assert_neq") (pfcs::para (:simple "x") (:simple "y")) (pfcs::body (:relation (:simple "boolean_neq") ((:var (:simple "x")) (:var (:simple "y")) (:var (:simple "z")))) (:relation (:simple "boolean_assert_true") ((:var (:simple "z"))))))) (equal (pfcs::lookup-definition '(:simple "boolean_assert_true") pfcs::defs) '(:definition (name :simple "boolean_assert_true") (pfcs::para (:simple "x")) (pfcs::body (:equal (:mul (:var (:simple "x")) (:const 1)) (:const 1))))) (equal (pfcs::lookup-definition '(:simple "boolean_neq") pfcs::defs) '(:definition (name :simple "boolean_neq") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:relation (:simple "boolean_xor") ((:var (:simple "x")) (:var (:simple "y")) (:var (:simple "z"))))))) (equal (pfcs::lookup-definition '(:simple "boolean_xor") pfcs::defs) '(:definition (name :simple "boolean_xor") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:mul (:const 2) (:var (:simple "x"))) (:var (:simple "y"))) (:sub (:add (:var (:simple "x")) (:var (:simple "y"))) (:var (:simple "z"))))))) (pfield::fep x prime) (pfield::fep y prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "boolean_assert_neq") pfcs::defs (list x y) prime) (boolean-assert-neq-pred x y prime))))