Lifting of the circuit to a predicate.
Theorem:
(defthm field-div-flagged-pred-suff (implies (and (pfield::fep w prime) (and (equal (pfield::mul y w prime) (pfield::sub (mod 1 prime) e prime)) (equal (pfield::mul y e prime) (mod 0 prime)) (equal (pfield::mul x w prime) z) (equal (pfield::mul z e prime) (mod 0 prime)))) (field-div-flagged-pred x y z e prime)))
Theorem:
(defthm definition-satp-to-field-div-flagged-pred (implies (and (equal (pfcs::lookup-definition '(:simple "field_div_flagged") pfcs::defs) '(:definition (name :simple "field_div_flagged") (pfcs::para (:simple "x") (:simple "y") (:simple "z") (:simple "e")) (pfcs::body (:equal (:mul (:var (:simple "y")) (:var (:simple "w"))) (:sub (:const 1) (:var (:simple "e")))) (:equal (:mul (:var (:simple "y")) (:var (:simple "e"))) (:const 0)) (:equal (:mul (:var (:simple "x")) (:var (:simple "w"))) (:var (:simple "z"))) (:equal (:mul (:var (:simple "z")) (:var (:simple "e"))) (:const 0))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (pfield::fep e prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "field_div_flagged") pfcs::defs (list x y z e) prime) (field-div-flagged-pred x y z e prime))))