Lifting of the circuit to a predicate.
Function:
(defun field-div-unchecked-pred (x y z prime) (and (equal (pfield::mul z y prime) x)))
Theorem:
(defthm definition-satp-to-field-div-unchecked-pred (implies (and (equal (pfcs::lookup-definition '(:simple "field_div_unchecked") pfcs::defs) '(:definition (name :simple "field_div_unchecked") (pfcs::para (:simple "x") (:simple "y") (:simple "z")) (pfcs::body (:equal (:mul (:var (:simple "z")) (:var (:simple "y"))) (:var (:simple "x")))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp '(:simple "field_div_unchecked") pfcs::defs (list x y z) prime) (field-div-unchecked-pred x y z prime))))