Basic theorems about unicode-listp, generated by std::deflist.
Theorem:
(defthm unicode-listp-of-cons (equal (unicode-listp (cons acl2::a acl2::x)) (and (unicodep acl2::a) (unicode-listp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm unicode-listp-of-cdr-when-unicode-listp (implies (unicode-listp (double-rewrite acl2::x)) (unicode-listp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm unicode-listp-when-not-consp (implies (not (consp acl2::x)) (equal (unicode-listp acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm unicodep-of-car-when-unicode-listp (implies (unicode-listp acl2::x) (iff (unicodep (car acl2::x)) (consp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-unicode-listp-compound-recognizer (implies (unicode-listp acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm unicode-listp-of-list-fix (implies (unicode-listp acl2::x) (unicode-listp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm unicode-listp-of-rev (equal (unicode-listp (rev acl2::x)) (unicode-listp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm unicode-listp-of-append (equal (unicode-listp (append acl2::a acl2::b)) (and (unicode-listp (list-fix acl2::a)) (unicode-listp acl2::b))) :rule-classes ((:rewrite)))