• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
      • Aig
      • Satlink
        • Sat-solver-options
        • Config-p
        • Logical-story
        • Dimacs
        • Gather-benchmarks
        • Cnf
          • Litp
            • Lit-negate-cond
              • Lit-negate-cond^
              • Lit-negate
              • Make-lit
              • Lit-equiv
              • Lit->var
              • Lit->neg
              • Lit-list
              • Maybe-litp
              • Lit-fix
              • Lit-list-list
            • Varp
            • Env$
            • Eval-formula
            • Max-index-formula
            • Max-index-clause
            • Formula-indices
            • Clause-indices
          • Satlink-extra-hook
          • Sat
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Lit-negate-cond

    Lit-negate-cond^

    Same as lit-negate-cond, but with a type declaration that the input literal is 32 bits unsigned.

    Signature
    (lit-negate-cond^ lit neg) → *
    Arguments
    lit — Guard (litp lit).
    neg — Guard (bitp neg).

    Definitions and Theorems

    Function: lit-negate-cond^$inline

    (defun lit-negate-cond^$inline (lit neg)
      (declare (type (unsigned-byte 32) lit)
               (type bit neg))
      (declare (xargs :guard (and (litp lit) (bitp neg))))
      (declare (xargs :guard (unsigned-byte-p 32 lit)
                      :split-types t))
      (let ((__function__ 'lit-negate-cond^))
        (declare (ignorable __function__))
        (mbe :logic (lit-negate-cond lit neg)
             :exec (the (unsigned-byte 32)
                        (logxor neg (the (unsigned-byte 32) lit))))))

    Theorem: lit-negate-cond^$inline-of-lit-fix-lit

    (defthm lit-negate-cond^$inline-of-lit-fix-lit
      (equal (lit-negate-cond^$inline (lit-fix lit)
                                      neg)
             (lit-negate-cond^$inline lit neg)))

    Theorem: lit-negate-cond^$inline-lit-equiv-congruence-on-lit

    (defthm lit-negate-cond^$inline-lit-equiv-congruence-on-lit
      (implies (lit-equiv lit lit-equiv)
               (equal (lit-negate-cond^$inline lit neg)
                      (lit-negate-cond^$inline lit-equiv neg)))
      :rule-classes :congruence)

    Theorem: lit-negate-cond^$inline-of-bfix-neg

    (defthm lit-negate-cond^$inline-of-bfix-neg
      (equal (lit-negate-cond^$inline lit (bfix neg))
             (lit-negate-cond^$inline lit neg)))

    Theorem: lit-negate-cond^$inline-bit-equiv-congruence-on-neg

    (defthm lit-negate-cond^$inline-bit-equiv-congruence-on-neg
      (implies (bit-equiv neg neg-equiv)
               (equal (lit-negate-cond^$inline lit neg)
                      (lit-negate-cond^$inline lit neg-equiv)))
      :rule-classes :congruence)