• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
        • Semantics
        • Abstract-syntax
          • Aexp
          • Bexp
          • Comm
          • Comm-list
            • Comm-list-equiv
            • Comm-listp
              • Comm-listp-basics
              • Comm-list-fix
            • Command-fixtypes
          • Interpreter
        • Sidekick
        • Ethereum
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Comm-listp

    Comm-listp-basics

    Basic theorems about comm-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: comm-listp-of-cons

    (defthm comm-listp-of-cons
      (equal (comm-listp (cons acl2::a acl2::x))
             (and (commp acl2::a)
                  (comm-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comm-listp-of-cdr-when-comm-listp

    (defthm comm-listp-of-cdr-when-comm-listp
      (implies (comm-listp (double-rewrite acl2::x))
               (comm-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comm-listp-when-not-consp

    (defthm comm-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (comm-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: commp-of-car-when-comm-listp

    (defthm commp-of-car-when-comm-listp
      (implies (comm-listp acl2::x)
               (iff (commp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-comm-listp-compound-recognizer

    (defthm true-listp-when-comm-listp-compound-recognizer
      (implies (comm-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: comm-listp-of-list-fix

    (defthm comm-listp-of-list-fix
      (implies (comm-listp acl2::x)
               (comm-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comm-listp-of-rev

    (defthm comm-listp-of-rev
      (equal (comm-listp (rev acl2::x))
             (comm-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comm-listp-of-append

    (defthm comm-listp-of-append
      (equal (comm-listp (append acl2::a acl2::b))
             (and (comm-listp (list-fix acl2::a))
                  (comm-listp acl2::b)))
      :rule-classes ((:rewrite)))