• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
        • Symbolic-test-vectors
        • Esim-primitives
        • E-conversion
          • Vl-ealist-p
          • Modinsts-to-eoccs
          • Vl-module-make-esim
          • Exploding-vectors
            • Vl-wirealist-p
            • Emodwire-encoding
            • Vl-emodwire-p
            • Vl-emodwirelistlist
              • Vl-emodwirelistlist-fix
              • Vl-emodwirelistlist-equiv
              • Vl-emodwirelistlist-p
                • Vl-emodwirelistlist-p-basics
              • Vl-emodwirelist
            • Resolving-multiple-drivers
            • Vl-modulelist-make-esims
            • Vl-module-check-e-ok
            • Vl-collect-design-wires
            • Adding-z-drivers
            • Vl-design-to-e
            • Vl-design-to-e-check-ports
            • Vl-design-to-e-main
            • Port-bit-checking
          • Esim-steps
          • Patterns
          • Mod-internal-paths
          • Defmodules
          • Esim-simplify-update-fns
          • Esim-tutorial
          • Esim-vl
        • Vl2014
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-emodwirelistlist-p

    Vl-emodwirelistlist-p-basics

    Basic theorems about vl-emodwirelistlist-p, generated by deflist.

    Definitions and Theorems

    Theorem: vl-emodwirelistlist-p-of-cons

    (defthm vl-emodwirelistlist-p-of-cons
      (equal (vl-emodwirelistlist-p (cons acl2::a acl2::x))
             (and (vl-emodwirelist-p acl2::a)
                  (vl-emodwirelistlist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-cdr-when-vl-emodwirelistlist-p

    (defthm vl-emodwirelistlist-p-of-cdr-when-vl-emodwirelistlist-p
      (implies (vl-emodwirelistlist-p (double-rewrite acl2::x))
               (vl-emodwirelistlist-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-when-not-consp

    (defthm vl-emodwirelistlist-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-emodwirelistlist-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelist-p-of-car-when-vl-emodwirelistlist-p

    (defthm vl-emodwirelist-p-of-car-when-vl-emodwirelistlist-p
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelist-p (car acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-append

    (defthm vl-emodwirelistlist-p-of-append
      (equal (vl-emodwirelistlist-p (append acl2::a acl2::b))
             (and (vl-emodwirelistlist-p acl2::a)
                  (vl-emodwirelistlist-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-list-fix

    (defthm vl-emodwirelistlist-p-of-list-fix
      (equal (vl-emodwirelistlist-p (list-fix acl2::x))
             (vl-emodwirelistlist-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-sfix

    (defthm vl-emodwirelistlist-p-of-sfix
      (iff (vl-emodwirelistlist-p (sfix acl2::x))
           (or (vl-emodwirelistlist-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-insert

    (defthm vl-emodwirelistlist-p-of-insert
      (iff (vl-emodwirelistlist-p (insert acl2::a acl2::x))
           (and (vl-emodwirelistlist-p (sfix acl2::x))
                (vl-emodwirelist-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-delete

    (defthm vl-emodwirelistlist-p-of-delete
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelistlist-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-mergesort

    (defthm vl-emodwirelistlist-p-of-mergesort
      (iff (vl-emodwirelistlist-p (mergesort acl2::x))
           (vl-emodwirelistlist-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-union

    (defthm vl-emodwirelistlist-p-of-union
      (iff (vl-emodwirelistlist-p (union acl2::x acl2::y))
           (and (vl-emodwirelistlist-p (sfix acl2::x))
                (vl-emodwirelistlist-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-intersect-1

    (defthm vl-emodwirelistlist-p-of-intersect-1
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelistlist-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-intersect-2

    (defthm vl-emodwirelistlist-p-of-intersect-2
      (implies (vl-emodwirelistlist-p acl2::y)
               (vl-emodwirelistlist-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-difference

    (defthm vl-emodwirelistlist-p-of-difference
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelistlist-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-duplicated-members

    (defthm vl-emodwirelistlist-p-of-duplicated-members
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelistlist-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-rev

    (defthm vl-emodwirelistlist-p-of-rev
      (equal (vl-emodwirelistlist-p (rev acl2::x))
             (vl-emodwirelistlist-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-rcons

    (defthm vl-emodwirelistlist-p-of-rcons
      (iff (vl-emodwirelistlist-p (acl2::rcons acl2::a acl2::x))
           (and (vl-emodwirelist-p acl2::a)
                (vl-emodwirelistlist-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelist-p-when-member-equal-of-vl-emodwirelistlist-p

    (defthm vl-emodwirelist-p-when-member-equal-of-vl-emodwirelistlist-p
      (and (implies (and (member-equal acl2::a acl2::x)
                         (vl-emodwirelistlist-p acl2::x))
                    (vl-emodwirelist-p acl2::a))
           (implies (and (vl-emodwirelistlist-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-emodwirelist-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-when-subsetp-equal

    (defthm vl-emodwirelistlist-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-emodwirelistlist-p acl2::y))
                    (vl-emodwirelistlist-p acl2::x))
           (implies (and (vl-emodwirelistlist-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-emodwirelistlist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-set-equiv-congruence

    (defthm vl-emodwirelistlist-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-emodwirelistlist-p acl2::x)
                      (vl-emodwirelistlist-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-emodwirelistlist-p-of-set-difference-equal

    (defthm vl-emodwirelistlist-p-of-set-difference-equal
     (implies
         (vl-emodwirelistlist-p acl2::x)
         (vl-emodwirelistlist-p (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-intersection-equal-1

    (defthm vl-emodwirelistlist-p-of-intersection-equal-1
      (implies
           (vl-emodwirelistlist-p (double-rewrite acl2::x))
           (vl-emodwirelistlist-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-intersection-equal-2

    (defthm vl-emodwirelistlist-p-of-intersection-equal-2
      (implies
           (vl-emodwirelistlist-p (double-rewrite acl2::y))
           (vl-emodwirelistlist-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-union-equal

    (defthm vl-emodwirelistlist-p-of-union-equal
      (equal (vl-emodwirelistlist-p (union-equal acl2::x acl2::y))
             (and (vl-emodwirelistlist-p (list-fix acl2::x))
                  (vl-emodwirelistlist-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-take

    (defthm vl-emodwirelistlist-p-of-take
      (implies (vl-emodwirelistlist-p (double-rewrite acl2::x))
               (iff (vl-emodwirelistlist-p (take acl2::n acl2::x))
                    (or (vl-emodwirelist-p nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-repeat

    (defthm vl-emodwirelistlist-p-of-repeat
      (iff (vl-emodwirelistlist-p (repeat acl2::n acl2::x))
           (or (vl-emodwirelist-p acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelist-p-of-nth-when-vl-emodwirelistlist-p

    (defthm vl-emodwirelist-p-of-nth-when-vl-emodwirelistlist-p
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelist-p (nth acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-update-nth

    (defthm vl-emodwirelistlist-p-of-update-nth
     (implies
       (vl-emodwirelistlist-p (double-rewrite acl2::x))
       (iff (vl-emodwirelistlist-p (update-nth acl2::n acl2::y acl2::x))
            (and (vl-emodwirelist-p acl2::y)
                 (or (<= (nfix acl2::n) (len acl2::x))
                     (vl-emodwirelist-p nil)))))
     :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-butlast

    (defthm vl-emodwirelistlist-p-of-butlast
      (implies (vl-emodwirelistlist-p (double-rewrite acl2::x))
               (vl-emodwirelistlist-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-nthcdr

    (defthm vl-emodwirelistlist-p-of-nthcdr
      (implies (vl-emodwirelistlist-p (double-rewrite acl2::x))
               (vl-emodwirelistlist-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-last

    (defthm vl-emodwirelistlist-p-of-last
      (implies (vl-emodwirelistlist-p (double-rewrite acl2::x))
               (vl-emodwirelistlist-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-remove

    (defthm vl-emodwirelistlist-p-of-remove
      (implies (vl-emodwirelistlist-p acl2::x)
               (vl-emodwirelistlist-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-emodwirelistlist-p-of-revappend

    (defthm vl-emodwirelistlist-p-of-revappend
      (equal (vl-emodwirelistlist-p (revappend acl2::x acl2::y))
             (and (vl-emodwirelistlist-p (list-fix acl2::x))
                  (vl-emodwirelistlist-p acl2::y)))
      :rule-classes ((:rewrite)))