Get the alt-kind field from a deftreeops-rulename-info.
(deftreeops-rulename-info->alt-kind x) → alt-kind
This is an ordinary field accessor created by fty::defprod.
Function:
(defun deftreeops-rulename-info->alt-kind$inline (x) (declare (xargs :guard (deftreeops-rulename-infop x))) (declare (xargs :guard t)) (let ((__function__ 'deftreeops-rulename-info->alt-kind)) (declare (ignorable __function__)) (mbe :logic (b* ((x (and t x))) (nfix (cdr (std::da-nth 6 x)))) :exec (cdr (std::da-nth 6 x)))))
Theorem:
(defthm natp-of-deftreeops-rulename-info->alt-kind (b* ((alt-kind (deftreeops-rulename-info->alt-kind$inline x))) (natp alt-kind)) :rule-classes :rewrite)
Theorem:
(defthm deftreeops-rulename-info->alt-kind$inline-of-deftreeops-rulename-info-fix-x (equal (deftreeops-rulename-info->alt-kind$inline (deftreeops-rulename-info-fix x)) (deftreeops-rulename-info->alt-kind$inline x)))
Theorem:
(defthm deftreeops-rulename-info->alt-kind$inline-deftreeops-rulename-info-equiv-congruence-on-x (implies (deftreeops-rulename-info-equiv x x-equiv) (equal (deftreeops-rulename-info->alt-kind$inline x) (deftreeops-rulename-info->alt-kind$inline x-equiv))) :rule-classes :congruence)