• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
      • Fgl
      • Vwsim
      • Vl
        • Syntax
        • Loader
        • Warnings
        • Getting-started
        • Utilities
        • Printer
        • Kit
        • Mlib
          • Scopestack
          • Hid-tools
          • Filtering-by-name
          • Vl-interface-mocktype
          • Stripping-functions
          • Genblob
          • Expr-tools
            • Vl-expr-typedecide
            • Vl-exprlist-resolved->vals
            • Vl-make-idexpr-list
            • Vl-idexprlist->names
            • Vl-expr-selfsize
            • Vl-expr-update-subexprs
            • Vl-exprlist-to-plainarglist
            • Vl-call-namedargs-update-subexprs
            • Vl-valuerangelist-update-subexprs
            • Vl-streamexprlist-update-subexprs
            • Vl-op-p
            • Vl-maybe-exprlist-update-subexprs
            • Vl-evatomlist-update-subexprs
            • Vl-expr-values
            • Vl-keyvallist-update-subexprs
            • Vl-assignpat-update-subexprs
            • Vl-valuerange-update-subexprs
            • Vl-scopeexpr-update-subexprs
            • Vl-partselect-update-subexprs
            • Vl-hidexpr-update-subexprs
            • Vl-expr-add-atts
            • Vl-arrayrange-update-subexprs
            • Vl-streamexpr-update-subexprs
            • Vl-slicesize-update-subexprs
            • Vl-plusminus-update-subexprs
            • Vl-patternkey-update-subexprs
            • Vl-expr-ops
            • Vl-make-integer
            • Vl-range-update-subexprs
            • Vl-idexpr
            • Vl-make-index
            • Vl-expr->subexprs
            • Vl-bitlist-from-nat
            • Vl-pps-expr
            • Vl-maybe-exprlist->subexprs
            • Vl-hidexpr->subexprs
            • Vl-evatomlist->subexprs
            • Vl-call-namedargs->subexprs
            • Vl-valuerangelist->subexprs
            • Vl-streamexprlist->subexprs
            • Vl-keyvallist->subexprs
            • Vl-exprlist-has-ops
            • Vl-expr-resolved-p
            • Vl-valuerange->subexprs
            • Vl-streamexpr->subexprs
            • Vl-slicesize->subexprs
            • Vl-scopeexpr->subexprs
            • Vl-patternkey->subexprs
            • Vl-partselect->subexprs
            • Vl-assignpat->subexprs
            • Vl-arrayrange->subexprs
            • Vl-pps-origexpr
            • Vl-plusminus->subexprs
            • Vl-idscope
            • Vl-idexpr->name
            • Vl-expr-has-ops
            • Vl-resolved->val
            • Vl-range->subexprs
            • Vl-idexpr-p
            • Vl-idexprlist-p
              • Vl-idexprlist-p-basics
              • Vl-exprlist-resolved-p
              • Vl-idscope->name
              • Vl-idscope-p
              • Vl-zbitlist-p
              • Vl-zatom-p
              • Vl-op-fix
              • Vl-oplist
              • Vl-expr-varnames
              • Vl-one-bit-constants
            • Extract-vl-types
            • Hierarchy
            • Range-tools
            • Finding-by-name
            • Stmt-tools
            • Modnamespace
            • Flat-warnings
            • Reordering-by-name
            • Datatype-tools
            • Syscalls
            • Allexprs
            • Lvalues
            • Port-tools
          • Transforms
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-idexprlist-p

    Vl-idexprlist-p-basics

    Basic theorems about vl-idexprlist-p, generated by deflist.

    Definitions and Theorems

    Theorem: vl-idexprlist-p-of-cons

    (defthm vl-idexprlist-p-of-cons
      (equal (vl-idexprlist-p (cons acl2::a acl2::x))
             (and (vl-idexpr-p acl2::a)
                  (vl-idexprlist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-cdr-when-vl-idexprlist-p

    (defthm vl-idexprlist-p-of-cdr-when-vl-idexprlist-p
      (implies (vl-idexprlist-p (double-rewrite acl2::x))
               (vl-idexprlist-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-when-not-consp

    (defthm vl-idexprlist-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-idexprlist-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexpr-p-of-car-when-vl-idexprlist-p

    (defthm vl-idexpr-p-of-car-when-vl-idexprlist-p
      (implies (vl-idexprlist-p acl2::x)
               (iff (vl-idexpr-p (car acl2::x))
                    (or (consp acl2::x) (vl-idexpr-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-append

    (defthm vl-idexprlist-p-of-append
      (equal (vl-idexprlist-p (append acl2::a acl2::b))
             (and (vl-idexprlist-p acl2::a)
                  (vl-idexprlist-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-list-fix

    (defthm vl-idexprlist-p-of-list-fix
      (equal (vl-idexprlist-p (list-fix acl2::x))
             (vl-idexprlist-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-sfix

    (defthm vl-idexprlist-p-of-sfix
      (iff (vl-idexprlist-p (sfix acl2::x))
           (or (vl-idexprlist-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-insert

    (defthm vl-idexprlist-p-of-insert
      (iff (vl-idexprlist-p (insert acl2::a acl2::x))
           (and (vl-idexprlist-p (sfix acl2::x))
                (vl-idexpr-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-delete

    (defthm vl-idexprlist-p-of-delete
      (implies (vl-idexprlist-p acl2::x)
               (vl-idexprlist-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-mergesort

    (defthm vl-idexprlist-p-of-mergesort
      (iff (vl-idexprlist-p (mergesort acl2::x))
           (vl-idexprlist-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-union

    (defthm vl-idexprlist-p-of-union
      (iff (vl-idexprlist-p (union acl2::x acl2::y))
           (and (vl-idexprlist-p (sfix acl2::x))
                (vl-idexprlist-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-intersect-1

    (defthm vl-idexprlist-p-of-intersect-1
      (implies (vl-idexprlist-p acl2::x)
               (vl-idexprlist-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-intersect-2

    (defthm vl-idexprlist-p-of-intersect-2
      (implies (vl-idexprlist-p acl2::y)
               (vl-idexprlist-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-difference

    (defthm vl-idexprlist-p-of-difference
      (implies (vl-idexprlist-p acl2::x)
               (vl-idexprlist-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-duplicated-members

    (defthm vl-idexprlist-p-of-duplicated-members
      (implies (vl-idexprlist-p acl2::x)
               (vl-idexprlist-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-rev

    (defthm vl-idexprlist-p-of-rev
      (equal (vl-idexprlist-p (rev acl2::x))
             (vl-idexprlist-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-rcons

    (defthm vl-idexprlist-p-of-rcons
      (iff (vl-idexprlist-p (acl2::rcons acl2::a acl2::x))
           (and (vl-idexpr-p acl2::a)
                (vl-idexprlist-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexpr-p-when-member-equal-of-vl-idexprlist-p

    (defthm vl-idexpr-p-when-member-equal-of-vl-idexprlist-p
      (and (implies (and (member-equal acl2::a acl2::x)
                         (vl-idexprlist-p acl2::x))
                    (vl-idexpr-p acl2::a))
           (implies (and (vl-idexprlist-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-idexpr-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-when-subsetp-equal

    (defthm vl-idexprlist-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-idexprlist-p acl2::y))
                    (vl-idexprlist-p acl2::x))
           (implies (and (vl-idexprlist-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-idexprlist-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-set-equiv-congruence

    (defthm vl-idexprlist-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-idexprlist-p acl2::x)
                      (vl-idexprlist-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-idexprlist-p-of-set-difference-equal

    (defthm vl-idexprlist-p-of-set-difference-equal
      (implies (vl-idexprlist-p acl2::x)
               (vl-idexprlist-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-intersection-equal-1

    (defthm vl-idexprlist-p-of-intersection-equal-1
      (implies (vl-idexprlist-p (double-rewrite acl2::x))
               (vl-idexprlist-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-intersection-equal-2

    (defthm vl-idexprlist-p-of-intersection-equal-2
      (implies (vl-idexprlist-p (double-rewrite acl2::y))
               (vl-idexprlist-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-union-equal

    (defthm vl-idexprlist-p-of-union-equal
      (equal (vl-idexprlist-p (union-equal acl2::x acl2::y))
             (and (vl-idexprlist-p (list-fix acl2::x))
                  (vl-idexprlist-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-take

    (defthm vl-idexprlist-p-of-take
      (implies (vl-idexprlist-p (double-rewrite acl2::x))
               (iff (vl-idexprlist-p (take acl2::n acl2::x))
                    (or (vl-idexpr-p nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-repeat

    (defthm vl-idexprlist-p-of-repeat
      (iff (vl-idexprlist-p (repeat acl2::n acl2::x))
           (or (vl-idexpr-p acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexpr-p-of-nth-when-vl-idexprlist-p

    (defthm vl-idexpr-p-of-nth-when-vl-idexprlist-p
      (implies (and (vl-idexprlist-p acl2::x)
                    (< (nfix acl2::n) (len acl2::x)))
               (vl-idexpr-p (nth acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-update-nth

    (defthm vl-idexprlist-p-of-update-nth
      (implies
           (vl-idexprlist-p (double-rewrite acl2::x))
           (iff (vl-idexprlist-p (update-nth acl2::n acl2::y acl2::x))
                (and (vl-idexpr-p acl2::y)
                     (or (<= (nfix acl2::n) (len acl2::x))
                         (vl-idexpr-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-butlast

    (defthm vl-idexprlist-p-of-butlast
      (implies (vl-idexprlist-p (double-rewrite acl2::x))
               (vl-idexprlist-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-nthcdr

    (defthm vl-idexprlist-p-of-nthcdr
      (implies (vl-idexprlist-p (double-rewrite acl2::x))
               (vl-idexprlist-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-last

    (defthm vl-idexprlist-p-of-last
      (implies (vl-idexprlist-p (double-rewrite acl2::x))
               (vl-idexprlist-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-remove

    (defthm vl-idexprlist-p-of-remove
      (implies (vl-idexprlist-p acl2::x)
               (vl-idexprlist-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-idexprlist-p-of-revappend

    (defthm vl-idexprlist-p-of-revappend
      (equal (vl-idexprlist-p (revappend acl2::x acl2::y))
             (and (vl-idexprlist-p (list-fix acl2::x))
                  (vl-idexprlist-p acl2::y)))
      :rule-classes ((:rewrite)))