• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
            • Svar
            • Least-fixpoint
            • Svex-p
            • Svex-select
            • Svex-alist
            • Svex-equiv
            • Svexlist
              • Svexlist-p
                • Svexlist-p-basics
                • Svex-update-nth
                • Svexlist-equiv
                • Svex-nth
                • Svexlist-fix
                • Patbind-svex-nths
              • Svex-call
              • Fnsym
              • Svex-quote
              • Svex-var
              • Svcall-rw
              • Svcall
              • Svex-kind
              • Svcall*
              • Svex-fix
              • Svex-count
              • Svex-1z
              • Svex-1x
              • Svex-z
              • Svex-x
            • Bit-blasting
            • Functions
            • 4vmask
            • Why-infinite-width
            • Svex-vars
            • Evaluation
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svexlist-p

    Svexlist-p-basics

    Basic theorems about svexlist-p, generated by std::deflist.

    Definitions and Theorems

    Theorem: svexlist-p-of-cons

    (defthm svexlist-p-of-cons
      (equal (svexlist-p (cons acl2::a x))
             (and (svex-p acl2::a) (svexlist-p x)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-cdr-when-svexlist-p

    (defthm svexlist-p-of-cdr-when-svexlist-p
      (implies (svexlist-p (double-rewrite x))
               (svexlist-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-when-not-consp

    (defthm svexlist-p-when-not-consp
      (implies (not (consp x))
               (equal (svexlist-p x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: svex-p-of-car-when-svexlist-p

    (defthm svex-p-of-car-when-svexlist-p
      (implies (svexlist-p x)
               (iff (svex-p (car x))
                    (or (consp x) (svex-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-svexlist-p-compound-recognizer

    (defthm true-listp-when-svexlist-p-compound-recognizer
      (implies (svexlist-p x) (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: svexlist-p-of-list-fix

    (defthm svexlist-p-of-list-fix
      (implies (svexlist-p x)
               (svexlist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-rev

    (defthm svexlist-p-of-rev
      (equal (svexlist-p (rev x))
             (svexlist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-repeat

    (defthm svexlist-p-of-repeat
      (iff (svexlist-p (repeat acl2::n x))
           (or (svex-p x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: svex-p-of-nth-when-svexlist-p

    (defthm svex-p-of-nth-when-svexlist-p
      (implies (and (svexlist-p x)
                    (< (nfix acl2::n) (len x)))
               (svex-p (nth acl2::n x)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-append

    (defthm svexlist-p-of-append
      (equal (svexlist-p (append acl2::a acl2::b))
             (and (svexlist-p (list-fix acl2::a))
                  (svexlist-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-rcons

    (defthm svexlist-p-of-rcons
      (iff (svexlist-p (acl2::rcons acl2::a x))
           (and (svex-p acl2::a)
                (svexlist-p (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: svex-p-when-member-equal-of-svexlist-p

    (defthm svex-p-when-member-equal-of-svexlist-p
      (and (implies (and (member-equal acl2::a x)
                         (svexlist-p x))
                    (svex-p acl2::a))
           (implies (and (svexlist-p x)
                         (member-equal acl2::a x))
                    (svex-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-when-subsetp-equal

    (defthm svexlist-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y) (svexlist-p y))
                    (equal (svexlist-p x) (true-listp x)))
           (implies (and (svexlist-p y) (subsetp-equal x y))
                    (equal (svexlist-p x) (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-set-difference-equal

    (defthm svexlist-p-of-set-difference-equal
      (implies (svexlist-p x)
               (svexlist-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-intersection-equal-1

    (defthm svexlist-p-of-intersection-equal-1
      (implies (svexlist-p (double-rewrite x))
               (svexlist-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-intersection-equal-2

    (defthm svexlist-p-of-intersection-equal-2
      (implies (svexlist-p (double-rewrite y))
               (svexlist-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: svexlist-p-of-union-equal

    (defthm svexlist-p-of-union-equal
      (equal (svexlist-p (union-equal x y))
             (and (svexlist-p (list-fix x))
                  (svexlist-p (double-rewrite y))))
      :rule-classes ((:rewrite)))