Get the unimplemented field from a sdm-instruction-table-entry.
(sdm-instruction-table-entry->unimplemented x) → unimplemented
This is an ordinary field accessor created by defprod.
Function:
(defun sdm-instruction-table-entry->unimplemented$inline (x) (declare (xargs :guard (sdm-instruction-table-entry-p x))) (declare (xargs :guard t)) (let ((__function__ 'sdm-instruction-table-entry->unimplemented)) (declare (ignorable __function__)) (mbe :logic (b* ((x (and t x))) (inst-list-fix (cdr (std::da-nth 2 x)))) :exec (cdr (std::da-nth 2 x)))))
Theorem:
(defthm inst-list-p-of-sdm-instruction-table-entry->unimplemented (b* ((unimplemented (sdm-instruction-table-entry->unimplemented$inline x))) (inst-list-p unimplemented)) :rule-classes :rewrite)
Theorem:
(defthm sdm-instruction-table-entry->unimplemented$inline-of-sdm-instruction-table-entry-fix-x (equal (sdm-instruction-table-entry->unimplemented$inline (sdm-instruction-table-entry-fix x)) (sdm-instruction-table-entry->unimplemented$inline x)))
Theorem:
(defthm sdm-instruction-table-entry->unimplemented$inline-sdm-instruction-table-entry-equiv-congruence-on-x (implies (sdm-instruction-table-entry-equiv x x-equiv) (equal (sdm-instruction-table-entry->unimplemented$inline x) (sdm-instruction-table-entry->unimplemented$inline x-equiv))) :rule-classes :congruence)