• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
        • Pretty-printing
        • Printtree
        • Base64
        • Charset-p
        • Strtok!
        • Cases
        • Concatenation
        • Character-kinds
        • Html-encoding
        • Substrings
        • Strtok
        • Equivalences
        • Url-encoding
        • Lines
        • Explode-implode-equalities
        • Ordering
        • Numbers
          • Decimal
          • Hex
            • Parse-hex-from-string
            • Hex-digit-char-p
            • Nat-to-hex-chars
            • Parse-hex-from-charlist
            • Hex-digit-chars-value
            • Hex-digit-char-value
            • Take-leading-hex-digit-chars
            • Hexify
            • Hex-digit-char-listp
              • Hex-digit-char-listp-basics
                • Hex-digit-char-listp-results
              • Hex-digit-char-list*p
              • Hex-digit-string-p
              • Strval16
              • Skip-leading-hex-digits
              • Nat-to-hex-string
              • Hexify-width
              • Nonzero-hex-digit-char-p
              • Nat-to-hex-string-list
              • Revappend-nat-to-hex-chars
              • Hex-digit-to-char
              • Nat-to-hex-string-size
            • Octal
            • Binary
          • Pad-trim
          • Coercion
          • Std/strings/digit-to-char
          • Substitution
          • Symbols
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Hex-digit-char-listp

    Hex-digit-char-listp-basics

    Basic theorems about hex-digit-char-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: hex-digit-char-listp-of-cons

    (defthm hex-digit-char-listp-of-cons
      (equal (hex-digit-char-listp (cons a x))
             (and (hex-digit-char-p a)
                  (hex-digit-char-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-cdr-when-hex-digit-char-listp

    (defthm hex-digit-char-listp-of-cdr-when-hex-digit-char-listp
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-when-not-consp

    (defthm hex-digit-char-listp-when-not-consp
      (implies (not (consp x))
               (equal (hex-digit-char-listp x)
                      (not x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-p-of-car-when-hex-digit-char-listp

    (defthm hex-digit-char-p-of-car-when-hex-digit-char-listp
      (implies (hex-digit-char-listp x)
               (iff (hex-digit-char-p (car x))
                    (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-hex-digit-char-listp-compound-recognizer

    (defthm true-listp-when-hex-digit-char-listp-compound-recognizer
      (implies (hex-digit-char-listp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: hex-digit-char-listp-of-list-fix

    (defthm hex-digit-char-listp-of-list-fix
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-sfix

    (defthm hex-digit-char-listp-of-sfix
      (iff (hex-digit-char-listp (set::sfix x))
           (or (hex-digit-char-listp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-insert

    (defthm hex-digit-char-listp-of-insert
      (iff (hex-digit-char-listp (set::insert a x))
           (and (hex-digit-char-listp (set::sfix x))
                (hex-digit-char-p a)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-delete

    (defthm hex-digit-char-listp-of-delete
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-mergesort

    (defthm hex-digit-char-listp-of-mergesort
      (iff (hex-digit-char-listp (set::mergesort x))
           (hex-digit-char-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-union

    (defthm hex-digit-char-listp-of-union
      (iff (hex-digit-char-listp (set::union x y))
           (and (hex-digit-char-listp (set::sfix x))
                (hex-digit-char-listp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersect-1

    (defthm hex-digit-char-listp-of-intersect-1
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersect-2

    (defthm hex-digit-char-listp-of-intersect-2
      (implies (hex-digit-char-listp y)
               (hex-digit-char-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-difference

    (defthm hex-digit-char-listp-of-difference
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-duplicated-members

    (defthm hex-digit-char-listp-of-duplicated-members
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-rev

    (defthm hex-digit-char-listp-of-rev
      (equal (hex-digit-char-listp (rev x))
             (hex-digit-char-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-append

    (defthm hex-digit-char-listp-of-append
      (equal (hex-digit-char-listp (append a b))
             (and (hex-digit-char-listp (list-fix a))
                  (hex-digit-char-listp b)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-rcons

    (defthm hex-digit-char-listp-of-rcons
      (iff (hex-digit-char-listp (acl2::rcons a x))
           (and (hex-digit-char-p a)
                (hex-digit-char-listp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-p-when-member-equal-of-hex-digit-char-listp

    (defthm hex-digit-char-p-when-member-equal-of-hex-digit-char-listp
      (and (implies (and (member-equal a x)
                         (hex-digit-char-listp x))
                    (hex-digit-char-p a))
           (implies (and (hex-digit-char-listp x)
                         (member-equal a x))
                    (hex-digit-char-p a)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-when-subsetp-equal

    (defthm hex-digit-char-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (hex-digit-char-listp y))
                    (equal (hex-digit-char-listp x)
                           (true-listp x)))
           (implies (and (hex-digit-char-listp y)
                         (subsetp-equal x y))
                    (equal (hex-digit-char-listp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-set-difference-equal

    (defthm hex-digit-char-listp-of-set-difference-equal
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersection-equal-1

    (defthm hex-digit-char-listp-of-intersection-equal-1
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersection-equal-2

    (defthm hex-digit-char-listp-of-intersection-equal-2
      (implies (hex-digit-char-listp (double-rewrite y))
               (hex-digit-char-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-union-equal

    (defthm hex-digit-char-listp-of-union-equal
      (equal (hex-digit-char-listp (union-equal x y))
             (and (hex-digit-char-listp (list-fix x))
                  (hex-digit-char-listp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-take

    (defthm hex-digit-char-listp-of-take
      (implies (hex-digit-char-listp (double-rewrite x))
               (iff (hex-digit-char-listp (take n x))
                    (or (hex-digit-char-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-repeat

    (defthm hex-digit-char-listp-of-repeat
      (iff (hex-digit-char-listp (repeat n x))
           (or (hex-digit-char-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-p-of-nth-when-hex-digit-char-listp

    (defthm hex-digit-char-p-of-nth-when-hex-digit-char-listp
      (implies (hex-digit-char-listp x)
               (iff (hex-digit-char-p (nth n x))
                    (< (nfix n) (len x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-update-nth

    (defthm hex-digit-char-listp-of-update-nth
      (implies (hex-digit-char-listp (double-rewrite x))
               (iff (hex-digit-char-listp (update-nth n y x))
                    (and (hex-digit-char-p y)
                         (or (<= (nfix n) (len x))
                             (hex-digit-char-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-butlast

    (defthm hex-digit-char-listp-of-butlast
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-nthcdr

    (defthm hex-digit-char-listp-of-nthcdr
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-last

    (defthm hex-digit-char-listp-of-last
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-remove

    (defthm hex-digit-char-listp-of-remove
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-revappend

    (defthm hex-digit-char-listp-of-revappend
      (equal (hex-digit-char-listp (revappend x y))
             (and (hex-digit-char-listp (list-fix x))
                  (hex-digit-char-listp y)))
      :rule-classes ((:rewrite)))