• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
        • Pretty-printing
        • Printtree
        • Base64
        • Charset-p
        • Strtok!
        • Cases
        • Concatenation
        • Character-kinds
        • Html-encoding
        • Substrings
        • Strtok
        • Equivalences
        • Url-encoding
        • Lines
        • Explode-implode-equalities
        • Ordering
        • Numbers
          • Decimal
          • Hex
          • Octal
          • Binary
            • Parse-bits-from-string
            • Parse-bits-from-charlist
            • Nat-to-bin-chars
            • Bin-digit-chars-value
            • Take-leading-bin-digit-chars
            • Bin-digit-char-listp
            • Skip-leading-bit-digits
            • Bin-digit-char-list*p
              • Bin-digit-char-list*p-basics
              • Bin-digit-string-p
              • Bin-digit-char-value
              • Strval2
              • Nat-to-bin-string
              • Bin-digit-char-p
              • Nat-to-bin-string-list
              • Nat-to-bin-string-size
              • Revappend-nat-to-bin-chars
              • Binify-width
              • Binify
          • Pad-trim
          • Coercion
          • Std/strings/digit-to-char
          • Substitution
          • Symbols
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Bin-digit-char-list*p

    Bin-digit-char-list*p-basics

    Basic theorems about bin-digit-char-list*p, generated by std::deflist.

    Definitions and Theorems

    Theorem: bin-digit-char-list*p-of-cons

    (defthm bin-digit-char-list*p-of-cons
      (equal (bin-digit-char-list*p (cons a x))
             (and (bin-digit-char-p a)
                  (bin-digit-char-list*p x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-cdr-when-bin-digit-char-list*p

    (defthm bin-digit-char-list*p-of-cdr-when-bin-digit-char-list*p
      (implies (bin-digit-char-list*p (double-rewrite x))
               (bin-digit-char-list*p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-when-not-consp

    (defthm bin-digit-char-list*p-when-not-consp
      (implies (not (consp x))
               (bin-digit-char-list*p x))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-p-of-car-when-bin-digit-char-list*p

    (defthm bin-digit-char-p-of-car-when-bin-digit-char-list*p
      (implies (bin-digit-char-list*p x)
               (iff (bin-digit-char-p (car x))
                    (or (consp x) (bin-digit-char-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-append

    (defthm bin-digit-char-list*p-of-append
      (equal (bin-digit-char-list*p (append a b))
             (and (bin-digit-char-list*p a)
                  (bin-digit-char-list*p b)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-list-fix

    (defthm bin-digit-char-list*p-of-list-fix
      (equal (bin-digit-char-list*p (list-fix x))
             (bin-digit-char-list*p x))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-sfix

    (defthm bin-digit-char-list*p-of-sfix
      (iff (bin-digit-char-list*p (set::sfix x))
           (or (bin-digit-char-list*p x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-insert

    (defthm bin-digit-char-list*p-of-insert
      (iff (bin-digit-char-list*p (set::insert a x))
           (and (bin-digit-char-list*p (set::sfix x))
                (bin-digit-char-p a)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-delete

    (defthm bin-digit-char-list*p-of-delete
      (implies (bin-digit-char-list*p x)
               (bin-digit-char-list*p (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-mergesort

    (defthm bin-digit-char-list*p-of-mergesort
      (iff (bin-digit-char-list*p (set::mergesort x))
           (bin-digit-char-list*p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-union

    (defthm bin-digit-char-list*p-of-union
      (iff (bin-digit-char-list*p (set::union x y))
           (and (bin-digit-char-list*p (set::sfix x))
                (bin-digit-char-list*p (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-intersect-1

    (defthm bin-digit-char-list*p-of-intersect-1
      (implies (bin-digit-char-list*p x)
               (bin-digit-char-list*p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-intersect-2

    (defthm bin-digit-char-list*p-of-intersect-2
      (implies (bin-digit-char-list*p y)
               (bin-digit-char-list*p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-difference

    (defthm bin-digit-char-list*p-of-difference
      (implies (bin-digit-char-list*p x)
               (bin-digit-char-list*p (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-duplicated-members

    (defthm bin-digit-char-list*p-of-duplicated-members
      (implies (bin-digit-char-list*p x)
               (bin-digit-char-list*p (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-rev

    (defthm bin-digit-char-list*p-of-rev
      (equal (bin-digit-char-list*p (rev x))
             (bin-digit-char-list*p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-rcons

    (defthm bin-digit-char-list*p-of-rcons
      (iff (bin-digit-char-list*p (acl2::rcons a x))
           (and (bin-digit-char-p a)
                (bin-digit-char-list*p (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-p-when-member-equal-of-bin-digit-char-list*p

    (defthm bin-digit-char-p-when-member-equal-of-bin-digit-char-list*p
      (and (implies (and (member-equal a x)
                         (bin-digit-char-list*p x))
                    (bin-digit-char-p a))
           (implies (and (bin-digit-char-list*p x)
                         (member-equal a x))
                    (bin-digit-char-p a)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-when-subsetp-equal

    (defthm bin-digit-char-list*p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (bin-digit-char-list*p y))
                    (bin-digit-char-list*p x))
           (implies (and (bin-digit-char-list*p y)
                         (subsetp-equal x y))
                    (bin-digit-char-list*p x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-set-equiv-congruence

    (defthm bin-digit-char-list*p-set-equiv-congruence
      (implies (acl2::set-equiv x y)
               (equal (bin-digit-char-list*p x)
                      (bin-digit-char-list*p y)))
      :rule-classes :congruence)

    Theorem: bin-digit-char-list*p-of-set-difference-equal

    (defthm bin-digit-char-list*p-of-set-difference-equal
      (implies (bin-digit-char-list*p x)
               (bin-digit-char-list*p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-intersection-equal-1

    (defthm bin-digit-char-list*p-of-intersection-equal-1
      (implies (bin-digit-char-list*p (double-rewrite x))
               (bin-digit-char-list*p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-intersection-equal-2

    (defthm bin-digit-char-list*p-of-intersection-equal-2
      (implies (bin-digit-char-list*p (double-rewrite y))
               (bin-digit-char-list*p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-union-equal

    (defthm bin-digit-char-list*p-of-union-equal
      (equal (bin-digit-char-list*p (union-equal x y))
             (and (bin-digit-char-list*p (list-fix x))
                  (bin-digit-char-list*p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-take

    (defthm bin-digit-char-list*p-of-take
      (implies (bin-digit-char-list*p (double-rewrite x))
               (iff (bin-digit-char-list*p (take n x))
                    (or (bin-digit-char-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-repeat

    (defthm bin-digit-char-list*p-of-repeat
      (iff (bin-digit-char-list*p (repeat n x))
           (or (bin-digit-char-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-p-of-nth-when-bin-digit-char-list*p

    (defthm bin-digit-char-p-of-nth-when-bin-digit-char-list*p
      (implies (and (bin-digit-char-list*p x)
                    (< (nfix n) (len x)))
               (bin-digit-char-p (nth n x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-update-nth

    (defthm bin-digit-char-list*p-of-update-nth
      (implies (bin-digit-char-list*p (double-rewrite x))
               (iff (bin-digit-char-list*p (update-nth n y x))
                    (and (bin-digit-char-p y)
                         (or (<= (nfix n) (len x))
                             (bin-digit-char-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-butlast

    (defthm bin-digit-char-list*p-of-butlast
      (implies (bin-digit-char-list*p (double-rewrite x))
               (bin-digit-char-list*p (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-nthcdr

    (defthm bin-digit-char-list*p-of-nthcdr
      (implies (bin-digit-char-list*p (double-rewrite x))
               (bin-digit-char-list*p (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-last

    (defthm bin-digit-char-list*p-of-last
      (implies (bin-digit-char-list*p (double-rewrite x))
               (bin-digit-char-list*p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-remove

    (defthm bin-digit-char-list*p-of-remove
      (implies (bin-digit-char-list*p x)
               (bin-digit-char-list*p (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: bin-digit-char-list*p-of-revappend

    (defthm bin-digit-char-list*p-of-revappend
      (equal (bin-digit-char-list*p (revappend x y))
             (and (bin-digit-char-list*p (list-fix x))
                  (bin-digit-char-list*p y)))
      :rule-classes ((:rewrite)))