• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
        • Pretty-printing
        • Printtree
        • Base64
        • Charset-p
          • Defcharset
          • Count-leading-charset
          • Str-count-leading-charset-fast
          • Str-count-leading-charset
          • Chars-in-charset-p
            • Chars-in-charset-p-basics
            • Code-in-charset-p
            • Char-in-charset-p
          • Strtok!
          • Cases
          • Concatenation
          • Character-kinds
          • Html-encoding
          • Substrings
          • Strtok
          • Equivalences
          • Url-encoding
          • Lines
          • Explode-implode-equalities
          • Ordering
          • Numbers
          • Pad-trim
          • Coercion
          • Std/strings/digit-to-char
          • Substitution
          • Symbols
        • Std/osets
        • Std/io
        • Std/basic
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Chars-in-charset-p

    Chars-in-charset-p-basics

    Basic theorems about chars-in-charset-p, generated by std::deflist.

    Definitions and Theorems

    Theorem: chars-in-charset-p-of-cons

    (defthm chars-in-charset-p-of-cons
      (equal (chars-in-charset-p (cons a x) set)
             (and (char-in-charset-p a set)
                  (chars-in-charset-p x set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-cdr-when-chars-in-charset-p

    (defthm chars-in-charset-p-of-cdr-when-chars-in-charset-p
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (cdr x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-when-not-consp

    (defthm chars-in-charset-p-when-not-consp
      (implies (not (consp x))
               (chars-in-charset-p x set))
      :rule-classes ((:rewrite)))

    Theorem: char-in-charset-p-of-car-when-chars-in-charset-p

    (defthm char-in-charset-p-of-car-when-chars-in-charset-p
      (implies (chars-in-charset-p x set)
               (iff (char-in-charset-p (car x) set)
                    (or (consp x)
                        (char-in-charset-p nil set))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-append

    (defthm chars-in-charset-p-of-append
      (equal (chars-in-charset-p (append a b) set)
             (and (chars-in-charset-p a set)
                  (chars-in-charset-p b set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-list-fix

    (defthm chars-in-charset-p-of-list-fix
      (equal (chars-in-charset-p (list-fix x) set)
             (chars-in-charset-p x set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-sfix

    (defthm chars-in-charset-p-of-sfix
      (iff (chars-in-charset-p (set::sfix x) set)
           (or (chars-in-charset-p x set)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-insert

    (defthm chars-in-charset-p-of-insert
      (iff (chars-in-charset-p (set::insert a x)
                               set)
           (and (chars-in-charset-p (set::sfix x) set)
                (char-in-charset-p a set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-delete

    (defthm chars-in-charset-p-of-delete
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set::delete k x)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-mergesort

    (defthm chars-in-charset-p-of-mergesort
      (iff (chars-in-charset-p (set::mergesort x)
                               set)
           (chars-in-charset-p (list-fix x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-union

    (defthm chars-in-charset-p-of-union
      (iff (chars-in-charset-p (set::union x y)
                               set)
           (and (chars-in-charset-p (set::sfix x) set)
                (chars-in-charset-p (set::sfix y) set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersect-1

    (defthm chars-in-charset-p-of-intersect-1
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set::intersect x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersect-2

    (defthm chars-in-charset-p-of-intersect-2
      (implies (chars-in-charset-p y set)
               (chars-in-charset-p (set::intersect x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-difference

    (defthm chars-in-charset-p-of-difference
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set::difference x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-duplicated-members

    (defthm chars-in-charset-p-of-duplicated-members
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (acl2::duplicated-members x)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-rev

    (defthm chars-in-charset-p-of-rev
      (equal (chars-in-charset-p (rev x) set)
             (chars-in-charset-p (list-fix x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-rcons

    (defthm chars-in-charset-p-of-rcons
      (iff (chars-in-charset-p (acl2::rcons a x)
                               set)
           (and (char-in-charset-p a set)
                (chars-in-charset-p (list-fix x) set)))
      :rule-classes ((:rewrite)))

    Theorem: char-in-charset-p-when-member-equal-of-chars-in-charset-p

    (defthm char-in-charset-p-when-member-equal-of-chars-in-charset-p
      (and (implies (and (member-equal a x)
                         (chars-in-charset-p x set))
                    (char-in-charset-p a set))
           (implies (and (chars-in-charset-p x set)
                         (member-equal a x))
                    (char-in-charset-p a set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-when-subsetp-equal

    (defthm chars-in-charset-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (chars-in-charset-p y set))
                    (chars-in-charset-p x set))
           (implies (and (chars-in-charset-p y set)
                         (subsetp-equal x y))
                    (chars-in-charset-p x set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-set-equiv-congruence

    (defthm chars-in-charset-p-set-equiv-congruence
      (implies (acl2::set-equiv x y)
               (equal (chars-in-charset-p x set)
                      (chars-in-charset-p y set)))
      :rule-classes :congruence)

    Theorem: chars-in-charset-p-of-set-difference-equal

    (defthm chars-in-charset-p-of-set-difference-equal
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (set-difference-equal x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersection-equal-1

    (defthm chars-in-charset-p-of-intersection-equal-1
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (intersection-equal x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-intersection-equal-2

    (defthm chars-in-charset-p-of-intersection-equal-2
      (implies (chars-in-charset-p (double-rewrite y)
                                   set)
               (chars-in-charset-p (intersection-equal x y)
                                   set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-union-equal

    (defthm chars-in-charset-p-of-union-equal
      (equal (chars-in-charset-p (union-equal x y)
                                 set)
             (and (chars-in-charset-p (list-fix x) set)
                  (chars-in-charset-p (double-rewrite y)
                                      set)))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-take

    (defthm chars-in-charset-p-of-take
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (iff (chars-in-charset-p (take n x) set)
                    (or (char-in-charset-p nil set)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-repeat

    (defthm chars-in-charset-p-of-repeat
      (iff (chars-in-charset-p (repeat n x) set)
           (or (char-in-charset-p x set) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: char-in-charset-p-of-nth-when-chars-in-charset-p

    (defthm char-in-charset-p-of-nth-when-chars-in-charset-p
      (implies (and (chars-in-charset-p x set)
                    (< (nfix n) (len x)))
               (char-in-charset-p (nth n x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-update-nth

    (defthm chars-in-charset-p-of-update-nth
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (iff (chars-in-charset-p (update-nth n y x)
                                        set)
                    (and (char-in-charset-p y set)
                         (or (<= (nfix n) (len x))
                             (char-in-charset-p nil set)))))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-butlast

    (defthm chars-in-charset-p-of-butlast
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (butlast x n) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-nthcdr

    (defthm chars-in-charset-p-of-nthcdr
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (nthcdr n x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-last

    (defthm chars-in-charset-p-of-last
      (implies (chars-in-charset-p (double-rewrite x)
                                   set)
               (chars-in-charset-p (last x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-remove

    (defthm chars-in-charset-p-of-remove
      (implies (chars-in-charset-p x set)
               (chars-in-charset-p (remove a x) set))
      :rule-classes ((:rewrite)))

    Theorem: chars-in-charset-p-of-revappend

    (defthm chars-in-charset-p-of-revappend
      (equal (chars-in-charset-p (revappend x y) set)
             (and (chars-in-charset-p (list-fix x) set)
                  (chars-in-charset-p y set)))
      :rule-classes ((:rewrite)))