• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
      • X86isa
      • Axe
      • Execloader
        • Elf-reader
          • Elf64_sym
          • Elf32_sym
          • Elf-header
          • Elf-section-header
          • Elf64-segment-header
          • Elf32-segment-header
          • Elf_bits32
          • Elf_bits8
          • Elf_bits64
          • Elf_bits16
          • Section-info
          • Read-section-headers
          • Read-segment-headers-64
          • Read-segment-headers-32
          • Read-section-names
          • Elf64_sym-info
          • Elf32_sym-info
          • Read-elf-header
          • Parse-symtab-entries
          • Populate-elf-contents
          • Is-elf-content-p
          • Get-string-section-data
          • Get-section-info1
          • Set-elf-stobj-fields
          • Get-named-section-headers
          • Elf-read-mem-null-term
          • Get-section-info
          • Get-symtab-entries
          • Find-label-address-from-elf-symtab-info
          • Section-names
          • Populate-elf
          • Get-label-addresses
          • Elf-read-string-null-term
          • Get-label-address
          • Good-elf-p
          • Elf64_sym-equiv-under-mask
          • Elf64-segment-headers
          • Elf32_sym-equiv-under-mask
          • Elf32-segment-headers
          • Section-info-list
          • Elf64_sym-info-list
            • Elf64_sym-info-list-fix
            • Elf64_sym-info-list-equiv
            • Elf64_sym-info-list-p
              • Elf64_sym-info-list-p-basics
            • Elf32_sym-info-list
            • Elf-section-headers
            • Elf64_sym-debug
            • Elf32_sym-debug
          • Mach-o-reader
          • Merge-first-split-bytes
          • Split-bytes
          • Take-till-zero
          • Charlist->bytes
          • Merge-bytes
          • Bytes->charlist
          • String->bytes
          • Bytes->string
      • Math
      • Testing-utilities
    • Elf64_sym-info-list-p

    Elf64_sym-info-list-p-basics

    Basic theorems about elf64_sym-info-list-p, generated by deflist.

    Definitions and Theorems

    Theorem: elf64_sym-info-list-p-of-cons

    (defthm elf64_sym-info-list-p-of-cons
      (equal (elf64_sym-info-list-p (cons a x))
             (and (elf64_sym-info-p a)
                  (elf64_sym-info-list-p x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-cdr-when-elf64_sym-info-list-p

    (defthm elf64_sym-info-list-p-of-cdr-when-elf64_sym-info-list-p
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (elf64_sym-info-list-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-when-not-consp

    (defthm elf64_sym-info-list-p-when-not-consp
      (implies (not (consp x))
               (equal (elf64_sym-info-list-p x)
                      (not x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-p-of-car-when-elf64_sym-info-list-p

    (defthm elf64_sym-info-p-of-car-when-elf64_sym-info-list-p
      (implies (elf64_sym-info-list-p x)
               (iff (elf64_sym-info-p (car x))
                    (or (consp x) (elf64_sym-info-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-elf64_sym-info-list-p-compound-recognizer

    (defthm true-listp-when-elf64_sym-info-list-p-compound-recognizer
      (implies (elf64_sym-info-list-p x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: elf64_sym-info-list-p-of-list-fix

    (defthm elf64_sym-info-list-p-of-list-fix
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-sfix

    (defthm elf64_sym-info-list-p-of-sfix
      (iff (elf64_sym-info-list-p (set::sfix x))
           (or (elf64_sym-info-list-p x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-insert

    (defthm elf64_sym-info-list-p-of-insert
      (iff (elf64_sym-info-list-p (set::insert a x))
           (and (elf64_sym-info-list-p (set::sfix x))
                (elf64_sym-info-p a)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-delete

    (defthm elf64_sym-info-list-p-of-delete
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-mergesort

    (defthm elf64_sym-info-list-p-of-mergesort
      (iff (elf64_sym-info-list-p (set::mergesort x))
           (elf64_sym-info-list-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-union

    (defthm elf64_sym-info-list-p-of-union
      (iff (elf64_sym-info-list-p (set::union x y))
           (and (elf64_sym-info-list-p (set::sfix x))
                (elf64_sym-info-list-p (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-intersect-1

    (defthm elf64_sym-info-list-p-of-intersect-1
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-intersect-2

    (defthm elf64_sym-info-list-p-of-intersect-2
      (implies (elf64_sym-info-list-p y)
               (elf64_sym-info-list-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-difference

    (defthm elf64_sym-info-list-p-of-difference
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-duplicated-members

    (defthm elf64_sym-info-list-p-of-duplicated-members
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-rev

    (defthm elf64_sym-info-list-p-of-rev
      (equal (elf64_sym-info-list-p (acl2::rev x))
             (elf64_sym-info-list-p (acl2::list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-append

    (defthm elf64_sym-info-list-p-of-append
      (equal (elf64_sym-info-list-p (append a b))
             (and (elf64_sym-info-list-p (acl2::list-fix a))
                  (elf64_sym-info-list-p b)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-rcons

    (defthm elf64_sym-info-list-p-of-rcons
      (iff (elf64_sym-info-list-p (acl2::rcons a x))
           (and (elf64_sym-info-p a)
                (elf64_sym-info-list-p (acl2::list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-p-when-member-equal-of-elf64_sym-info-list-p

    (defthm elf64_sym-info-p-when-member-equal-of-elf64_sym-info-list-p
      (and (implies (and (member-equal a x)
                         (elf64_sym-info-list-p x))
                    (elf64_sym-info-p a))
           (implies (and (elf64_sym-info-list-p x)
                         (member-equal a x))
                    (elf64_sym-info-p a)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-when-subsetp-equal

    (defthm elf64_sym-info-list-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (elf64_sym-info-list-p y))
                    (equal (elf64_sym-info-list-p x)
                           (true-listp x)))
           (implies (and (elf64_sym-info-list-p y)
                         (subsetp-equal x y))
                    (equal (elf64_sym-info-list-p x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-set-difference-equal

    (defthm elf64_sym-info-list-p-of-set-difference-equal
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-intersection-equal-1

    (defthm elf64_sym-info-list-p-of-intersection-equal-1
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (elf64_sym-info-list-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-intersection-equal-2

    (defthm elf64_sym-info-list-p-of-intersection-equal-2
      (implies (elf64_sym-info-list-p (double-rewrite y))
               (elf64_sym-info-list-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-union-equal

    (defthm elf64_sym-info-list-p-of-union-equal
      (equal (elf64_sym-info-list-p (union-equal x y))
             (and (elf64_sym-info-list-p (acl2::list-fix x))
                  (elf64_sym-info-list-p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-take

    (defthm elf64_sym-info-list-p-of-take
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (iff (elf64_sym-info-list-p (take n x))
                    (or (elf64_sym-info-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-repeat

    (defthm elf64_sym-info-list-p-of-repeat
      (iff (elf64_sym-info-list-p (acl2::repeat n x))
           (or (elf64_sym-info-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-p-of-nth-when-elf64_sym-info-list-p

    (defthm elf64_sym-info-p-of-nth-when-elf64_sym-info-list-p
      (implies (and (elf64_sym-info-list-p x)
                    (< (nfix n) (len x)))
               (elf64_sym-info-p (nth n x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-update-nth

    (defthm elf64_sym-info-list-p-of-update-nth
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (iff (elf64_sym-info-list-p (update-nth n y x))
                    (and (elf64_sym-info-p y)
                         (or (<= (nfix n) (len x))
                             (elf64_sym-info-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-butlast

    (defthm elf64_sym-info-list-p-of-butlast
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (elf64_sym-info-list-p (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-nthcdr

    (defthm elf64_sym-info-list-p-of-nthcdr
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (elf64_sym-info-list-p (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-last

    (defthm elf64_sym-info-list-p-of-last
      (implies (elf64_sym-info-list-p (double-rewrite x))
               (elf64_sym-info-list-p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-remove

    (defthm elf64_sym-info-list-p-of-remove
      (implies (elf64_sym-info-list-p x)
               (elf64_sym-info-list-p (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: elf64_sym-info-list-p-of-revappend

    (defthm elf64_sym-info-list-p-of-revappend
      (equal (elf64_sym-info-list-p (revappend x y))
             (and (elf64_sym-info-list-p (acl2::list-fix x))
                  (elf64_sym-info-list-p y)))
      :rule-classes ((:rewrite)))