• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
          • Defbyte
          • Defresult
          • Fold
          • Specific-types
            • Pos-list
              • Defbyte-standard-instances
              • Defbytelist-standard-instances
              • Byte-list
              • Byte
              • String-option
              • Pos-option
              • Nibble
              • Nat-option
              • Ubyte32-option
              • Byte-list20
              • Byte-list32
              • Byte-list64
              • Pseudo-event-form
              • Natoption/natoptionlist
              • Nati
              • Character-list
              • Nat/natlist
              • Maybe-string
              • Nibble-list
              • Natoption/natoptionlist-result
              • Nat/natlist-result
              • Nat-option-list-result
              • Set
              • String-result
              • String-list-result
              • Nat-result
              • Nat-option-result
              • Nat-list-result
              • Maybe-string-result
              • Integer-result
              • Character-result
              • Character-list-result
              • Boolean-result
              • Map
              • Bag
              • Pos-set
              • Hex-digit-char-list
              • Dec-digit-char-list
              • Pseudo-event-form-list
              • Nat-option-list
              • Character-any-map
              • Any-nat-map
              • Symbol-set
              • String-set
              • Nat-set
              • Character-set
              • Oct-digit-char-list
              • Bin-digit-char-list
              • Bit-list
            • Defsubtype
            • Defset
            • Defflatsum
            • Deflist-of-len
            • Pos-list
              • Defomap
              • Defbytelist
              • Defbyte-standard-instances
              • Deffixtype-alias
              • Defbytelist-standard-instances
              • Defunit
              • Byte-list
              • Database
              • Byte
              • String-option
              • Pos-option
              • Nibble
              • Nat-option
              • Ubyte32-option
              • Byte-list20
              • Byte-list32
              • Byte-list64
              • Pseudo-event-form
              • Natoption/natoptionlist
              • Nati
              • Character-list
              • Nat/natlist
              • Maybe-string
              • Nibble-list
              • Natoption/natoptionlist-result
              • Nat/natlist-result
              • Nat-option-list-result
              • Set
              • String-result
              • String-list-result
              • Nat-result
              • Nat-option-result
              • Nat-list-result
              • Maybe-string-result
              • Integer-result
              • Character-result
              • Character-list-result
              • Boolean-result
              • Map
              • Dependencies
              • Bag
              • Pos-set
              • Hex-digit-char-list
              • Dec-digit-char-list
              • Pseudo-event-form-list
              • Nat-option-list
              • Character-any-map
              • Any-nat-map
              • Symbol-set
              • String-set
              • Nat-set
              • Character-set
              • Oct-digit-char-list
              • Bin-digit-char-list
              • Bit-list
            • Isar
            • Kestrel-utilities
            • Set
            • C
            • Soft
            • Bv
            • Imp-language
            • Ethereum
            • Event-macros
            • Java
            • Riscv
            • Bitcoin
            • Zcash
            • Yul
            • ACL2-programming-language
            • Prime-fields
            • Json
            • Syntheto
            • File-io-light
            • Cryptography
            • Number-theory
            • Axe
            • Lists-light
            • Builtins
            • Solidity
            • Helpers
            • Htclient
            • Typed-lists-light
            • Arithmetic-light
          • X86isa
          • Axe
          • Execloader
        • Math
        • Testing-utilities
      • Fty-extensions
      • Specific-types
      • Pos-listp

      Pos-list

      Fixtype of lists of positive integers.

      Definitions and Theorems

      Theorem: pos-listp-of-cons

      (defthm pos-listp-of-cons
        (equal (pos-listp (cons a x))
               (and (posp a) (pos-listp x)))
        :rule-classes ((:rewrite)))

      Theorem: pos-listp-of-cdr-when-pos-listp

      (defthm pos-listp-of-cdr-when-pos-listp
        (implies (pos-listp (double-rewrite x))
                 (pos-listp (cdr x)))
        :rule-classes ((:rewrite)))

      Theorem: pos-listp-when-not-consp

      (defthm pos-listp-when-not-consp
        (implies (not (consp x))
                 (equal (pos-listp x) (not x)))
        :rule-classes ((:rewrite)))

      Theorem: posp-of-car-when-pos-listp

      (defthm posp-of-car-when-pos-listp
        (implies (pos-listp x)
                 (iff (posp (car x)) (consp x)))
        :rule-classes ((:rewrite)))

      Theorem: true-listp-when-pos-listp-compound-recognizer

      (defthm true-listp-when-pos-listp-compound-recognizer
        (implies (pos-listp x) (true-listp x))
        :rule-classes :compound-recognizer)

      Theorem: pos-listp-of-list-fix

      (defthm pos-listp-of-list-fix
        (implies (pos-listp x)
                 (pos-listp (list-fix x)))
        :rule-classes ((:rewrite)))

      Theorem: pos-listp-of-rev

      (defthm pos-listp-of-rev
        (equal (pos-listp (rev x))
               (pos-listp (list-fix x)))
        :rule-classes ((:rewrite)))

      Function: pos-list-fix$inline

      (defun pos-list-fix$inline (x)
        (declare (xargs :guard (pos-listp x)))
        (let ((__function__ 'pos-list-fix))
          (declare (ignorable __function__))
          (mbe :logic
               (if (atom x)
                   nil
                 (cons (pos-fix (car x))
                       (pos-list-fix (cdr x))))
               :exec x)))

      Theorem: pos-listp-of-pos-list-fix

      (defthm pos-listp-of-pos-list-fix
        (b* ((fty::newx (pos-list-fix$inline x)))
          (pos-listp fty::newx))
        :rule-classes :rewrite)

      Theorem: pos-list-fix-when-pos-listp

      (defthm pos-list-fix-when-pos-listp
        (implies (pos-listp x)
                 (equal (pos-list-fix x) x)))

      Function: pos-list-equiv$inline

      (defun pos-list-equiv$inline (x y)
        (declare (xargs :guard (and (pos-listp x) (pos-listp y))))
        (equal (pos-list-fix x)
               (pos-list-fix y)))

      Theorem: pos-list-equiv-is-an-equivalence

      (defthm pos-list-equiv-is-an-equivalence
        (and (booleanp (pos-list-equiv x y))
             (pos-list-equiv x x)
             (implies (pos-list-equiv x y)
                      (pos-list-equiv y x))
             (implies (and (pos-list-equiv x y)
                           (pos-list-equiv y z))
                      (pos-list-equiv x z)))
        :rule-classes (:equivalence))

      Theorem: pos-list-equiv-implies-equal-pos-list-fix-1

      (defthm pos-list-equiv-implies-equal-pos-list-fix-1
        (implies (pos-list-equiv x x-equiv)
                 (equal (pos-list-fix x)
                        (pos-list-fix x-equiv)))
        :rule-classes (:congruence))

      Theorem: pos-list-fix-under-pos-list-equiv

      (defthm pos-list-fix-under-pos-list-equiv
        (pos-list-equiv (pos-list-fix x) x)
        :rule-classes (:rewrite :rewrite-quoted-constant))

      Theorem: equal-of-pos-list-fix-1-forward-to-pos-list-equiv

      (defthm equal-of-pos-list-fix-1-forward-to-pos-list-equiv
        (implies (equal (pos-list-fix x) y)
                 (pos-list-equiv x y))
        :rule-classes :forward-chaining)

      Theorem: equal-of-pos-list-fix-2-forward-to-pos-list-equiv

      (defthm equal-of-pos-list-fix-2-forward-to-pos-list-equiv
        (implies (equal x (pos-list-fix y))
                 (pos-list-equiv x y))
        :rule-classes :forward-chaining)

      Theorem: pos-list-equiv-of-pos-list-fix-1-forward

      (defthm pos-list-equiv-of-pos-list-fix-1-forward
        (implies (pos-list-equiv (pos-list-fix x) y)
                 (pos-list-equiv x y))
        :rule-classes :forward-chaining)

      Theorem: pos-list-equiv-of-pos-list-fix-2-forward

      (defthm pos-list-equiv-of-pos-list-fix-2-forward
        (implies (pos-list-equiv x (pos-list-fix y))
                 (pos-list-equiv x y))
        :rule-classes :forward-chaining)

      Theorem: car-of-pos-list-fix-x-under-pos-equiv

      (defthm car-of-pos-list-fix-x-under-pos-equiv
        (pos-equiv (car (pos-list-fix x))
                   (car x)))

      Theorem: car-pos-list-equiv-congruence-on-x-under-pos-equiv

      (defthm car-pos-list-equiv-congruence-on-x-under-pos-equiv
        (implies (pos-list-equiv x x-equiv)
                 (pos-equiv (car x) (car x-equiv)))
        :rule-classes :congruence)

      Theorem: cdr-of-pos-list-fix-x-under-pos-list-equiv

      (defthm cdr-of-pos-list-fix-x-under-pos-list-equiv
        (pos-list-equiv (cdr (pos-list-fix x))
                        (cdr x)))

      Theorem: cdr-pos-list-equiv-congruence-on-x-under-pos-list-equiv

      (defthm cdr-pos-list-equiv-congruence-on-x-under-pos-list-equiv
        (implies (pos-list-equiv x x-equiv)
                 (pos-list-equiv (cdr x) (cdr x-equiv)))
        :rule-classes :congruence)

      Theorem: cons-of-pos-fix-x-under-pos-list-equiv

      (defthm cons-of-pos-fix-x-under-pos-list-equiv
        (pos-list-equiv (cons (pos-fix x) y)
                        (cons x y)))

      Theorem: cons-pos-equiv-congruence-on-x-under-pos-list-equiv

      (defthm cons-pos-equiv-congruence-on-x-under-pos-list-equiv
        (implies (pos-equiv x x-equiv)
                 (pos-list-equiv (cons x y)
                                 (cons x-equiv y)))
        :rule-classes :congruence)

      Theorem: cons-of-pos-list-fix-y-under-pos-list-equiv

      (defthm cons-of-pos-list-fix-y-under-pos-list-equiv
        (pos-list-equiv (cons x (pos-list-fix y))
                        (cons x y)))

      Theorem: cons-pos-list-equiv-congruence-on-y-under-pos-list-equiv

      (defthm cons-pos-list-equiv-congruence-on-y-under-pos-list-equiv
        (implies (pos-list-equiv y y-equiv)
                 (pos-list-equiv (cons x y)
                                 (cons x y-equiv)))
        :rule-classes :congruence)

      Theorem: consp-of-pos-list-fix

      (defthm consp-of-pos-list-fix
        (equal (consp (pos-list-fix x))
               (consp x)))

      Theorem: pos-list-fix-under-iff

      (defthm pos-list-fix-under-iff
        (iff (pos-list-fix x) (consp x)))

      Theorem: pos-list-fix-of-cons

      (defthm pos-list-fix-of-cons
        (equal (pos-list-fix (cons a x))
               (cons (pos-fix a) (pos-list-fix x))))

      Theorem: len-of-pos-list-fix

      (defthm len-of-pos-list-fix
        (equal (len (pos-list-fix x)) (len x)))

      Theorem: pos-list-fix-of-append

      (defthm pos-list-fix-of-append
        (equal (pos-list-fix (append std::a std::b))
               (append (pos-list-fix std::a)
                       (pos-list-fix std::b))))

      Theorem: pos-list-fix-of-repeat

      (defthm pos-list-fix-of-repeat
        (equal (pos-list-fix (repeat n x))
               (repeat n (pos-fix x))))

      Theorem: list-equiv-refines-pos-list-equiv

      (defthm list-equiv-refines-pos-list-equiv
        (implies (list-equiv x y)
                 (pos-list-equiv x y))
        :rule-classes :refinement)

      Theorem: nth-of-pos-list-fix

      (defthm nth-of-pos-list-fix
        (equal (nth n (pos-list-fix x))
               (if (< (nfix n) (len x))
                   (pos-fix (nth n x))
                 nil)))

      Theorem: pos-list-equiv-implies-pos-list-equiv-append-1

      (defthm pos-list-equiv-implies-pos-list-equiv-append-1
        (implies (pos-list-equiv x fty::x-equiv)
                 (pos-list-equiv (append x y)
                                 (append fty::x-equiv y)))
        :rule-classes (:congruence))

      Theorem: pos-list-equiv-implies-pos-list-equiv-append-2

      (defthm pos-list-equiv-implies-pos-list-equiv-append-2
        (implies (pos-list-equiv y fty::y-equiv)
                 (pos-list-equiv (append x y)
                                 (append x fty::y-equiv)))
        :rule-classes (:congruence))

      Theorem: pos-list-equiv-implies-pos-list-equiv-nthcdr-2

      (defthm pos-list-equiv-implies-pos-list-equiv-nthcdr-2
        (implies (pos-list-equiv l l-equiv)
                 (pos-list-equiv (nthcdr n l)
                                 (nthcdr n l-equiv)))
        :rule-classes (:congruence))

      Theorem: pos-list-equiv-implies-pos-list-equiv-take-2

      (defthm pos-list-equiv-implies-pos-list-equiv-take-2
        (implies (pos-list-equiv l l-equiv)
                 (pos-list-equiv (take n l)
                                 (take n l-equiv)))
        :rule-classes (:congruence))