Basic equivalence relation for struct-declor structures.
Function:
(defun struct-declor-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (struct-declorp acl2::x) (struct-declorp acl2::y)))) (equal (struct-declor-fix acl2::x) (struct-declor-fix acl2::y)))
Theorem:
(defthm struct-declor-equiv-is-an-equivalence (and (booleanp (struct-declor-equiv x y)) (struct-declor-equiv x x) (implies (struct-declor-equiv x y) (struct-declor-equiv y x)) (implies (and (struct-declor-equiv x y) (struct-declor-equiv y z)) (struct-declor-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm struct-declor-equiv-implies-equal-struct-declor-fix-1 (implies (struct-declor-equiv acl2::x x-equiv) (equal (struct-declor-fix acl2::x) (struct-declor-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm struct-declor-fix-under-struct-declor-equiv (struct-declor-equiv (struct-declor-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-struct-declor-fix-1-forward-to-struct-declor-equiv (implies (equal (struct-declor-fix acl2::x) acl2::y) (struct-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-struct-declor-fix-2-forward-to-struct-declor-equiv (implies (equal acl2::x (struct-declor-fix acl2::y)) (struct-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm struct-declor-equiv-of-struct-declor-fix-1-forward (implies (struct-declor-equiv (struct-declor-fix acl2::x) acl2::y) (struct-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm struct-declor-equiv-of-struct-declor-fix-2-forward (implies (struct-declor-equiv acl2::x (struct-declor-fix acl2::y)) (struct-declor-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)