Fixing function for dec-expo structures.
Function:
(defun dec-expo-fix$inline (x) (declare (xargs :guard (dec-expop x))) (mbe :logic (b* ((prefix (dec-expo-prefix-fix (car x))) (sign? (sign-option-fix (car (cdr x)))) (digits (str::dec-digit-char-list-fix (cdr (cdr x))))) (cons prefix (cons sign? digits))) :exec x))
Theorem:
(defthm dec-expop-of-dec-expo-fix (b* ((new-x (dec-expo-fix$inline x))) (dec-expop new-x)) :rule-classes :rewrite)
Theorem:
(defthm dec-expo-fix-when-dec-expop (implies (dec-expop x) (equal (dec-expo-fix x) x)))
Function:
(defun dec-expo-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (dec-expop acl2::x) (dec-expop acl2::y)))) (equal (dec-expo-fix acl2::x) (dec-expo-fix acl2::y)))
Theorem:
(defthm dec-expo-equiv-is-an-equivalence (and (booleanp (dec-expo-equiv x y)) (dec-expo-equiv x x) (implies (dec-expo-equiv x y) (dec-expo-equiv y x)) (implies (and (dec-expo-equiv x y) (dec-expo-equiv y z)) (dec-expo-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm dec-expo-equiv-implies-equal-dec-expo-fix-1 (implies (dec-expo-equiv acl2::x x-equiv) (equal (dec-expo-fix acl2::x) (dec-expo-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm dec-expo-fix-under-dec-expo-equiv (dec-expo-equiv (dec-expo-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-dec-expo-fix-1-forward-to-dec-expo-equiv (implies (equal (dec-expo-fix acl2::x) acl2::y) (dec-expo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-dec-expo-fix-2-forward-to-dec-expo-equiv (implies (equal acl2::x (dec-expo-fix acl2::y)) (dec-expo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dec-expo-equiv-of-dec-expo-fix-1-forward (implies (dec-expo-equiv (dec-expo-fix acl2::x) acl2::y) (dec-expo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dec-expo-equiv-of-dec-expo-fix-2-forward (implies (dec-expo-equiv acl2::x (dec-expo-fix acl2::y)) (dec-expo-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm dec-expo-fix$inline-of-dec-expo-fix-x (equal (dec-expo-fix$inline (dec-expo-fix x)) (dec-expo-fix$inline x)))
Theorem:
(defthm dec-expo-fix$inline-dec-expo-equiv-congruence-on-x (implies (dec-expo-equiv x x-equiv) (equal (dec-expo-fix$inline x) (dec-expo-fix$inline x-equiv))) :rule-classes :congruence)