• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
      • Gl
      • Witness-cp
      • Ccg
      • Install-not-normalized
      • Rewrite$
      • Fgl
        • Fgl-rewrite-rules
        • Fgl-function-mode
        • Fgl-object
        • Fgl-solving
        • Fgl-handling-if-then-elses
        • Fgl-counterexamples
        • Fgl-getting-bits-from-objects
        • Fgl-primitive-and-meta-rules
        • Fgl-interpreter-overview
        • Fgl-correctness-of-binding-free-variables
        • Fgl-debugging
        • Fgl-testbenches
        • Def-fgl-boolean-constraint
        • Fgl-stack
          • Scratchobj
          • Minor-frame
          • Major-frame
          • Major-stack
          • Scratchlist
            • Scratchlist-fix
            • Scratchlist-equiv
            • Scratchlist-p
              • Scratchlist-p-basics
            • Minor-stack
          • Def-fgl-param-thm
          • Fgl-rewrite-tracing
          • Def-fgl-thm
          • Fgl-fast-alist-support
          • Fgl-array-support
          • Advanced-equivalence-checking-with-fgl
          • Fgl-fty-support
          • Fgl-internals
        • Removable-runes
        • Efficiency
        • Rewrite-bounds
        • Bash
        • Def-dag-measure
        • Bdd
        • Remove-hyps
        • Contextual-rewriting
        • Simp
        • Rewrite$-hyps
        • Bash-term-to-dnf
        • Use-trivial-ancestors-check
        • Minimal-runes
        • Clause-processor-tools
        • Fn-is-body
        • Without-subsumption
        • Rewrite-equiv-hint
        • Def-bounds
        • Rewrite$-context
        • Try-gl-concls
        • Hint-utils
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Scratchlist-p

    Scratchlist-p-basics

    Basic theorems about scratchlist-p, generated by deflist.

    Definitions and Theorems

    Theorem: scratchlist-p-of-cons

    (defthm scratchlist-p-of-cons
      (equal (scratchlist-p (cons a x))
             (and (scratchobj-p a)
                  (scratchlist-p x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-cdr-when-scratchlist-p

    (defthm scratchlist-p-of-cdr-when-scratchlist-p
      (implies (scratchlist-p (double-rewrite x))
               (scratchlist-p (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-when-not-consp

    (defthm scratchlist-p-when-not-consp
      (implies (not (consp x))
               (equal (scratchlist-p x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchobj-p-of-car-when-scratchlist-p

    (defthm scratchobj-p-of-car-when-scratchlist-p
      (implies (scratchlist-p x)
               (iff (scratchobj-p (car x))
                    (or (consp x) (scratchobj-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-scratchlist-p-compound-recognizer

    (defthm true-listp-when-scratchlist-p-compound-recognizer
      (implies (scratchlist-p x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: scratchlist-p-of-list-fix

    (defthm scratchlist-p-of-list-fix
      (implies (scratchlist-p x)
               (scratchlist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-sfix

    (defthm scratchlist-p-of-sfix
      (iff (scratchlist-p (set::sfix x))
           (or (scratchlist-p x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-insert

    (defthm scratchlist-p-of-insert
      (iff (scratchlist-p (set::insert a x))
           (and (scratchlist-p (set::sfix x))
                (scratchobj-p a)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-delete

    (defthm scratchlist-p-of-delete
      (implies (scratchlist-p x)
               (scratchlist-p (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-mergesort

    (defthm scratchlist-p-of-mergesort
      (iff (scratchlist-p (set::mergesort x))
           (scratchlist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-union

    (defthm scratchlist-p-of-union
      (iff (scratchlist-p (set::union x y))
           (and (scratchlist-p (set::sfix x))
                (scratchlist-p (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-intersect-1

    (defthm scratchlist-p-of-intersect-1
      (implies (scratchlist-p x)
               (scratchlist-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-intersect-2

    (defthm scratchlist-p-of-intersect-2
      (implies (scratchlist-p y)
               (scratchlist-p (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-difference

    (defthm scratchlist-p-of-difference
      (implies (scratchlist-p x)
               (scratchlist-p (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-duplicated-members

    (defthm scratchlist-p-of-duplicated-members
      (implies (scratchlist-p x)
               (scratchlist-p (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-rev

    (defthm scratchlist-p-of-rev
      (equal (scratchlist-p (rev x))
             (scratchlist-p (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-append

    (defthm scratchlist-p-of-append
      (equal (scratchlist-p (append a b))
             (and (scratchlist-p (list-fix a))
                  (scratchlist-p b)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-rcons

    (defthm scratchlist-p-of-rcons
      (iff (scratchlist-p (acl2::rcons a x))
           (and (scratchobj-p a)
                (scratchlist-p (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: scratchobj-p-when-member-equal-of-scratchlist-p

    (defthm scratchobj-p-when-member-equal-of-scratchlist-p
      (and (implies (and (member-equal a x)
                         (scratchlist-p x))
                    (scratchobj-p a))
           (implies (and (scratchlist-p x)
                         (member-equal a x))
                    (scratchobj-p a)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-when-subsetp-equal

    (defthm scratchlist-p-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (scratchlist-p y))
                    (equal (scratchlist-p x)
                           (true-listp x)))
           (implies (and (scratchlist-p y)
                         (subsetp-equal x y))
                    (equal (scratchlist-p x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-set-difference-equal

    (defthm scratchlist-p-of-set-difference-equal
      (implies (scratchlist-p x)
               (scratchlist-p (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-intersection-equal-1

    (defthm scratchlist-p-of-intersection-equal-1
      (implies (scratchlist-p (double-rewrite x))
               (scratchlist-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-intersection-equal-2

    (defthm scratchlist-p-of-intersection-equal-2
      (implies (scratchlist-p (double-rewrite y))
               (scratchlist-p (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-union-equal

    (defthm scratchlist-p-of-union-equal
      (equal (scratchlist-p (union-equal x y))
             (and (scratchlist-p (list-fix x))
                  (scratchlist-p (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-take

    (defthm scratchlist-p-of-take
      (implies (scratchlist-p (double-rewrite x))
               (iff (scratchlist-p (take n x))
                    (or (scratchobj-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-repeat

    (defthm scratchlist-p-of-repeat
      (iff (scratchlist-p (acl2::repeat n x))
           (or (scratchobj-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: scratchobj-p-of-nth-when-scratchlist-p

    (defthm scratchobj-p-of-nth-when-scratchlist-p
      (implies (and (scratchlist-p x)
                    (< (nfix n) (len x)))
               (scratchobj-p (nth n x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-update-nth

    (defthm scratchlist-p-of-update-nth
      (implies (scratchlist-p (double-rewrite x))
               (iff (scratchlist-p (update-nth n y x))
                    (and (scratchobj-p y)
                         (or (<= (nfix n) (len x))
                             (scratchobj-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-butlast

    (defthm scratchlist-p-of-butlast
      (implies (scratchlist-p (double-rewrite x))
               (scratchlist-p (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-nthcdr

    (defthm scratchlist-p-of-nthcdr
      (implies (scratchlist-p (double-rewrite x))
               (scratchlist-p (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-last

    (defthm scratchlist-p-of-last
      (implies (scratchlist-p (double-rewrite x))
               (scratchlist-p (last x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-remove

    (defthm scratchlist-p-of-remove
      (implies (scratchlist-p x)
               (scratchlist-p (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: scratchlist-p-of-revappend

    (defthm scratchlist-p-of-revappend
      (equal (scratchlist-p (revappend x y))
             (and (scratchlist-p (list-fix x))
                  (scratchlist-p y)))
      :rule-classes ((:rewrite)))