• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Update-nth
          • Take
          • Set-difference$
          • Nthcdr
          • Subsetp
          • No-duplicatesp
          • Concatenate
          • Remove
          • Remove1
          • Intersectp
          • Endp
          • Keyword-value-listp
          • Integer-listp
          • Reverse
          • Add-to-set
          • List-utilities
          • Set-size
          • Revappend
          • Subseq
            • Subseq-list
            • Make-list
            • Lists-light
            • Boolean-listp
            • Butlast
            • Pairlis$
            • Substitute
            • Count
            • Keyword-listp
            • List*
            • Last
            • Eqlable-listp
            • Integer-range-listp
            • Rational-listp
            • Pos-listp
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Odds
            • List$
            • Listp
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/lists
    • Subseq

    Subseq-list

    Lemmas about subseq-list available in the std/lists library.

    ACL2's built-in subseq-list function is used in the definition of subseq. It has a somewhat reasonable definition in terms of take and nthcdr.

    Function: subseq-list

    (defun subseq-list (lst start end)
      (declare (xargs :guard (and (true-listp lst)
                                  (integerp start)
                                  (integerp end)
                                  (<= 0 start)
                                  (<= start end))))
      (take (- end start) (nthcdr start lst)))

    Unfortunately subseq-list doesn't properly nfix its start argument, so in the logic, when start is a negative number, we can end up doing a longer take, which is kind of appalling and somewhat reduces our ability to write nice rules about subseq-list.

    It is often pretty reasonable to just leave subseq-list enabled.

    Definitions and Theorems

    Theorem: len-of-subseq-list

    (defthm len-of-subseq-list
      (equal (len (subseq-list x start end))
             (nfix (- end start))))

    Theorem: consp-of-subseq-list

    (defthm consp-of-subseq-list
      (equal (consp (subseq-list x start end))
             (posp (- end start))))

    Theorem: subseq-list-under-iff

    (defthm subseq-list-under-iff
      (iff (subseq-list x start end)
           (posp (- end start))))

    Theorem: subseq-list-of-list-fix

    (defthm subseq-list-of-list-fix
      (equal (subseq-list (list-fix x) start end)
             (subseq-list x start end)))

    Theorem: list-equiv-implies-equal-subseq-list-1

    (defthm list-equiv-implies-equal-subseq-list-1
      (implies (list-equiv x x-equiv)
               (equal (subseq-list x start end)
                      (subseq-list x-equiv start end)))
      :rule-classes (:congruence))

    Theorem: subseq-list-starting-from-zero

    (defthm subseq-list-starting-from-zero
      (equal (subseq-list x 0 n) (take n x)))

    Theorem: subseq-list-of-len

    (defthm subseq-list-of-len
      (implies (natp n)
               (equal (subseq-list x n (len x))
                      (nthcdr n (list-fix x)))))