• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
          • Std/strings
            • Pretty-printing
            • Printtree
            • Base64
            • Charset-p
            • Strtok!
            • Cases
            • Concatenation
            • Character-kinds
            • Html-encoding
            • Substrings
            • Strtok
            • Equivalences
              • Charlisteqv
              • Icharlisteqv
                • Istreqv
                • Ichareqv
                • Streqv
                • Chareqv
                • Char-fix
                • Str-fix
              • Url-encoding
              • Lines
              • Explode-implode-equalities
              • Ordering
              • Numbers
              • Pad-trim
              • Coercion
              • Std/strings/digit-to-char
              • Substitution
              • Symbols
            • String-listp
            • Stringp
            • Length
            • Search
            • Remove-duplicates
            • Position
            • Coerce
            • Concatenate
            • Reverse
            • String
            • Subseq
            • Substitute
            • String-upcase
            • String-downcase
            • Count
            • Char
            • String<
            • String-equal
            • String-utilities
            • String-append
            • String>=
            • String<=
            • String>
            • Hex-digit-char-theorems
            • String-downcase-gen
            • String-upcase-gen
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Equivalences
    • Cases

    Icharlisteqv

    Case-insensitive character-list equivalence test.

    Signature
    (icharlisteqv x y) → bool
    Arguments
    x — Guard (character-listp x).
    y — Guard (character-listp y).

    (icharlisteqv x y) determines if x and y are case-insensitively equivalent character lists. That is, x and y must have the same length and their elements must be ichareqv to one another.

    See also charlisteqv for a case-sensitive alternative.

    Definitions and Theorems

    Function: icharlisteqv

    (defun icharlisteqv (x y)
      (declare (xargs :guard (and (character-listp x)
                                  (character-listp y))))
      (let ((acl2::__function__ 'icharlisteqv))
        (declare (ignorable acl2::__function__))
        (if (consp x)
            (and (consp y)
                 (ichareqv (car x) (car y))
                 (icharlisteqv (cdr x) (cdr y)))
          (atom y))))

    Theorem: icharlisteqv-is-an-equivalence

    (defthm icharlisteqv-is-an-equivalence
      (and (booleanp (icharlisteqv x y))
           (icharlisteqv x x)
           (implies (icharlisteqv x y)
                    (icharlisteqv y x))
           (implies (and (icharlisteqv x y)
                         (icharlisteqv y z))
                    (icharlisteqv x z)))
      :rule-classes (:equivalence))

    Theorem: charlisteqv-refines-icharlisteqv

    (defthm charlisteqv-refines-icharlisteqv
      (implies (charlisteqv x y)
               (icharlisteqv x y))
      :rule-classes (:refinement))

    Theorem: icharlisteqv-implies-ichareqv-car-1

    (defthm icharlisteqv-implies-ichareqv-car-1
      (implies (icharlisteqv x x-equiv)
               (ichareqv (car x) (car x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-cdr-1

    (defthm icharlisteqv-implies-icharlisteqv-cdr-1
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (cdr x) (cdr x-equiv)))
      :rule-classes (:congruence))

    Theorem: ichareqv-implies-icharlisteqv-cons-1

    (defthm ichareqv-implies-icharlisteqv-cons-1
      (implies (ichareqv a a-equiv)
               (icharlisteqv (cons a x)
                             (cons a-equiv x)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-cons-2

    (defthm icharlisteqv-implies-icharlisteqv-cons-2
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (cons a x)
                             (cons a x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-equal-len-1

    (defthm icharlisteqv-implies-equal-len-1
      (implies (icharlisteqv x x-equiv)
               (equal (len x) (len x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-list-fix-1

    (defthm icharlisteqv-implies-icharlisteqv-list-fix-1
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (list-fix x)
                             (list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-ichareqv-nth-2

    (defthm icharlisteqv-implies-ichareqv-nth-2
      (implies (icharlisteqv x x-equiv)
               (ichareqv (nth n x) (nth n x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-nthcdr-2

    (defthm icharlisteqv-implies-icharlisteqv-nthcdr-2
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (nthcdr n x)
                             (nthcdr n x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-take-2

    (defthm icharlisteqv-implies-icharlisteqv-take-2
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (take n x)
                             (take n x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-append-1

    (defthm icharlisteqv-implies-icharlisteqv-append-1
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (append x y)
                             (append x-equiv y)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-append-2

    (defthm icharlisteqv-implies-icharlisteqv-append-2
      (implies (icharlisteqv y y-equiv)
               (icharlisteqv (append x y)
                             (append x y-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-rev-1

    (defthm icharlisteqv-implies-icharlisteqv-rev-1
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (rev x) (rev x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-revappend-2

    (defthm icharlisteqv-implies-icharlisteqv-revappend-2
      (implies (icharlisteqv y y-equiv)
               (icharlisteqv (revappend x y)
                             (revappend x y-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-revappend-1

    (defthm icharlisteqv-implies-icharlisteqv-revappend-1
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (revappend x y)
                             (revappend x-equiv y)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-implies-icharlisteqv-make-character-list-1

    (defthm icharlisteqv-implies-icharlisteqv-make-character-list-1
      (implies (icharlisteqv x x-equiv)
               (icharlisteqv (make-character-list x)
                             (make-character-list x-equiv)))
      :rule-classes (:congruence))

    Theorem: icharlisteqv-when-not-consp-left

    (defthm icharlisteqv-when-not-consp-left
      (implies (not (consp x))
               (equal (icharlisteqv x y) (atom y))))

    Theorem: icharlisteqv-when-not-consp-right

    (defthm icharlisteqv-when-not-consp-right
      (implies (not (consp y))
               (equal (icharlisteqv x y) (atom x))))

    Theorem: icharlisteqv-of-cons-right

    (defthm icharlisteqv-of-cons-right
      (equal (icharlisteqv x (cons a y))
             (and (consp x)
                  (ichareqv (car x) (double-rewrite a))
                  (icharlisteqv (cdr x)
                                (double-rewrite y)))))

    Theorem: icharlisteqv-of-cons-left

    (defthm icharlisteqv-of-cons-left
      (equal (icharlisteqv (cons a x) y)
             (and (consp y)
                  (ichareqv (double-rewrite a) (car y))
                  (icharlisteqv (double-rewrite x)
                                (cdr y)))))

    Theorem: icharlisteqv-when-not-same-lens

    (defthm icharlisteqv-when-not-same-lens
      (implies (not (equal (len x) (len y)))
               (not (icharlisteqv x y))))