• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
          • Std/strings
            • Pretty-printing
            • Printtree
            • Base64
            • Charset-p
            • Strtok!
            • Cases
            • Concatenation
            • Character-kinds
            • Html-encoding
            • Substrings
            • Strtok
            • Equivalences
            • Url-encoding
            • Lines
            • Explode-implode-equalities
            • Ordering
            • Numbers
              • Decimal
              • Hex
                • Parse-hex-from-string
                • Hex-digit-char-p
                • Nat-to-hex-chars
                • Parse-hex-from-charlist
                • Hex-digit-chars-value
                • Hex-digit-char-value
                • Take-leading-hex-digit-chars
                • Hexify
                • Hex-digit-char-listp
                  • Hex-digit-char-listp-basics
                    • Hex-digit-char-listp-results
                  • Hex-digit-char-list*p
                  • Hex-digit-string-p
                  • Strval16
                  • Skip-leading-hex-digits
                  • Nat-to-hex-string
                  • Hexify-width
                  • Nonzero-hex-digit-char-p
                  • Nat-to-hex-string-list
                  • Revappend-nat-to-hex-chars
                  • Hex-digit-to-char
                  • Nat-to-hex-string-size
                • Octal
                • Binary
              • Pad-trim
              • Coercion
              • Std/strings/digit-to-char
              • Substitution
              • Symbols
            • String-listp
            • Stringp
            • Length
            • Search
            • Remove-duplicates
            • Position
            • Coerce
            • Concatenate
            • Reverse
            • String
            • Subseq
            • Substitute
            • String-upcase
            • String-downcase
            • Count
            • Char
            • String<
            • String-equal
            • String-utilities
            • String-append
            • String>=
            • String<=
            • String>
            • Hex-digit-char-theorems
            • String-downcase-gen
            • String-upcase-gen
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Hex-digit-char-listp

    Hex-digit-char-listp-basics

    Basic theorems about hex-digit-char-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: hex-digit-char-listp-of-cons

    (defthm hex-digit-char-listp-of-cons
      (equal (hex-digit-char-listp (cons a x))
             (and (hex-digit-char-p a)
                  (hex-digit-char-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-cdr-when-hex-digit-char-listp

    (defthm hex-digit-char-listp-of-cdr-when-hex-digit-char-listp
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-when-not-consp

    (defthm hex-digit-char-listp-when-not-consp
      (implies (not (consp x))
               (equal (hex-digit-char-listp x)
                      (not x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-p-of-car-when-hex-digit-char-listp

    (defthm hex-digit-char-p-of-car-when-hex-digit-char-listp
      (implies (hex-digit-char-listp x)
               (iff (hex-digit-char-p (car x))
                    (consp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-hex-digit-char-listp-compound-recognizer

    (defthm true-listp-when-hex-digit-char-listp-compound-recognizer
      (implies (hex-digit-char-listp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: hex-digit-char-listp-of-list-fix

    (defthm hex-digit-char-listp-of-list-fix
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-sfix

    (defthm hex-digit-char-listp-of-sfix
      (iff (hex-digit-char-listp (set::sfix x))
           (or (hex-digit-char-listp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-insert

    (defthm hex-digit-char-listp-of-insert
      (iff (hex-digit-char-listp (set::insert a x))
           (and (hex-digit-char-listp (set::sfix x))
                (hex-digit-char-p a)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-delete

    (defthm hex-digit-char-listp-of-delete
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-mergesort

    (defthm hex-digit-char-listp-of-mergesort
      (iff (hex-digit-char-listp (set::mergesort x))
           (hex-digit-char-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-union

    (defthm hex-digit-char-listp-of-union
      (iff (hex-digit-char-listp (set::union x y))
           (and (hex-digit-char-listp (set::sfix x))
                (hex-digit-char-listp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersect-1

    (defthm hex-digit-char-listp-of-intersect-1
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersect-2

    (defthm hex-digit-char-listp-of-intersect-2
      (implies (hex-digit-char-listp y)
               (hex-digit-char-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-difference

    (defthm hex-digit-char-listp-of-difference
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-duplicated-members

    (defthm hex-digit-char-listp-of-duplicated-members
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (acl2::duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-rev

    (defthm hex-digit-char-listp-of-rev
      (equal (hex-digit-char-listp (rev x))
             (hex-digit-char-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-append

    (defthm hex-digit-char-listp-of-append
      (equal (hex-digit-char-listp (append a b))
             (and (hex-digit-char-listp (list-fix a))
                  (hex-digit-char-listp b)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-rcons

    (defthm hex-digit-char-listp-of-rcons
      (iff (hex-digit-char-listp (acl2::rcons a x))
           (and (hex-digit-char-p a)
                (hex-digit-char-listp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-p-when-member-equal-of-hex-digit-char-listp

    (defthm hex-digit-char-p-when-member-equal-of-hex-digit-char-listp
      (and (implies (and (member-equal a x)
                         (hex-digit-char-listp x))
                    (hex-digit-char-p a))
           (implies (and (hex-digit-char-listp x)
                         (member-equal a x))
                    (hex-digit-char-p a)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-when-subsetp-equal

    (defthm hex-digit-char-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (hex-digit-char-listp y))
                    (equal (hex-digit-char-listp x)
                           (true-listp x)))
           (implies (and (hex-digit-char-listp y)
                         (subsetp-equal x y))
                    (equal (hex-digit-char-listp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-set-difference-equal

    (defthm hex-digit-char-listp-of-set-difference-equal
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersection-equal-1

    (defthm hex-digit-char-listp-of-intersection-equal-1
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-intersection-equal-2

    (defthm hex-digit-char-listp-of-intersection-equal-2
      (implies (hex-digit-char-listp (double-rewrite y))
               (hex-digit-char-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-union-equal

    (defthm hex-digit-char-listp-of-union-equal
      (equal (hex-digit-char-listp (union-equal x y))
             (and (hex-digit-char-listp (list-fix x))
                  (hex-digit-char-listp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-take

    (defthm hex-digit-char-listp-of-take
      (implies (hex-digit-char-listp (double-rewrite x))
               (iff (hex-digit-char-listp (take n x))
                    (or (hex-digit-char-p nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-repeat

    (defthm hex-digit-char-listp-of-repeat
      (iff (hex-digit-char-listp (repeat n x))
           (or (hex-digit-char-p x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-p-of-nth-when-hex-digit-char-listp

    (defthm hex-digit-char-p-of-nth-when-hex-digit-char-listp
      (implies (hex-digit-char-listp x)
               (iff (hex-digit-char-p (nth n x))
                    (< (nfix n) (len x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-update-nth

    (defthm hex-digit-char-listp-of-update-nth
      (implies (hex-digit-char-listp (double-rewrite x))
               (iff (hex-digit-char-listp (update-nth n y x))
                    (and (hex-digit-char-p y)
                         (or (<= (nfix n) (len x))
                             (hex-digit-char-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-butlast

    (defthm hex-digit-char-listp-of-butlast
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-nthcdr

    (defthm hex-digit-char-listp-of-nthcdr
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-last

    (defthm hex-digit-char-listp-of-last
      (implies (hex-digit-char-listp (double-rewrite x))
               (hex-digit-char-listp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-remove

    (defthm hex-digit-char-listp-of-remove
      (implies (hex-digit-char-listp x)
               (hex-digit-char-listp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-digit-char-listp-of-revappend

    (defthm hex-digit-char-listp-of-revappend
      (equal (hex-digit-char-listp (revappend x y))
             (and (hex-digit-char-listp (list-fix x))
                  (hex-digit-char-listp y)))
      :rule-classes ((:rewrite)))