• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
        • Warnings
        • Primitives
        • Use-set
        • Syntax
        • Getting-started
        • Utilities
        • Loader
          • Preprocessor
            • Vl-iframe-p
            • Preprocessor-ifdef-minutia
            • Vl-preprocess-loop
            • Vl-read-until-end-of-define
            • Vl-expand-define
            • Vl-read-include
            • Vl-process-ifdef
            • Vl-substitute-into-macro-text
            • Vl-preprocess
            • Vl-define
            • Vl-process-define
            • Vl-process-undef
            • Preprocessor-include-minutia
            • Vl-split-define-text
            • Vl-read-timescale
            • Vl-line-up-define-formals-and-actuals
            • Vl-process-else
            • Vl-process-endif
            • Vl-istack-p
            • Vl-is-compiler-directive-p
            • Vl-check-remaining-formals-all-have-defaults
            • Vl-safe-previous-n
            • Vl-safe-next-n
            • Vl-defines
              • Vl-defines-fix
              • Vl-defines-p
                • Vl-defines-p-basics
                  • Vl-delete-define
                  • Vl-find-define
                  • Vl-make-initial-defines
                • Vl-defines-equiv
              • *vl-preprocess-clock*
            • Vl-loadconfig
            • Lexer
            • Vl-loadstate
            • Parser
            • Vl-load-merge-descriptions
            • Scope-of-defines
            • Vl-load-file
            • Vl-flush-out-descriptions
            • Vl-description
            • Vl-loadresult
            • Vl-read-file
            • Vl-find-basename/extension
            • Vl-find-file
            • Vl-read-files
            • Extended-characters
            • Vl-load
            • Vl-load-main
            • Vl-load-description
            • Vl-descriptions-left-to-load
            • Inject-warnings
            • Vl-load-descriptions
            • Vl-load-files
            • Vl-load-summary
            • Vl-collect-modules-from-descriptions
            • Vl-descriptionlist
          • Transforms
          • Lint
          • Mlib
          • Server
          • Kit
          • Printer
          • Esim-vl
          • Well-formedness
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Vl-defines-p

    Vl-defines-p-basics

    Basic theorems about vl-defines-p, generated by deflist.

    Definitions and Theorems

    Theorem: vl-defines-p-of-cons

    (defthm vl-defines-p-of-cons
      (equal (vl-defines-p (cons acl2::a acl2::x))
             (and (vl-define-p acl2::a)
                  (vl-defines-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-cdr-when-vl-defines-p

    (defthm vl-defines-p-of-cdr-when-vl-defines-p
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-when-not-consp

    (defthm vl-defines-p-when-not-consp
      (implies (not (consp acl2::x))
               (vl-defines-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-define-p-of-car-when-vl-defines-p

    (defthm vl-define-p-of-car-when-vl-defines-p
      (implies (vl-defines-p acl2::x)
               (iff (vl-define-p (car acl2::x))
                    (or (consp acl2::x) (vl-define-p nil))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-append

    (defthm vl-defines-p-of-append
      (equal (vl-defines-p (append acl2::a acl2::b))
             (and (vl-defines-p acl2::a)
                  (vl-defines-p acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-list-fix

    (defthm vl-defines-p-of-list-fix
      (equal (vl-defines-p (list-fix acl2::x))
             (vl-defines-p acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-sfix

    (defthm vl-defines-p-of-sfix
      (iff (vl-defines-p (sfix acl2::x))
           (or (vl-defines-p acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-insert

    (defthm vl-defines-p-of-insert
      (iff (vl-defines-p (insert acl2::a acl2::x))
           (and (vl-defines-p (sfix acl2::x))
                (vl-define-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-delete

    (defthm vl-defines-p-of-delete
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-mergesort

    (defthm vl-defines-p-of-mergesort
      (iff (vl-defines-p (mergesort acl2::x))
           (vl-defines-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-union

    (defthm vl-defines-p-of-union
      (iff (vl-defines-p (union acl2::x acl2::y))
           (and (vl-defines-p (sfix acl2::x))
                (vl-defines-p (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersect-1

    (defthm vl-defines-p-of-intersect-1
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersect-2

    (defthm vl-defines-p-of-intersect-2
      (implies (vl-defines-p acl2::y)
               (vl-defines-p (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-difference

    (defthm vl-defines-p-of-difference
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-duplicated-members

    (defthm vl-defines-p-of-duplicated-members
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-rev

    (defthm vl-defines-p-of-rev
      (equal (vl-defines-p (rev acl2::x))
             (vl-defines-p (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-rcons

    (defthm vl-defines-p-of-rcons
      (iff (vl-defines-p (acl2::rcons acl2::a acl2::x))
           (and (vl-define-p acl2::a)
                (vl-defines-p (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: vl-define-p-when-member-equal-of-vl-defines-p

    (defthm vl-define-p-when-member-equal-of-vl-defines-p
      (and (implies (and (member-equal acl2::a acl2::x)
                         (vl-defines-p acl2::x))
                    (vl-define-p acl2::a))
           (implies (and (vl-defines-p acl2::x)
                         (member-equal acl2::a acl2::x))
                    (vl-define-p acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-when-subsetp-equal

    (defthm vl-defines-p-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (vl-defines-p acl2::y))
                    (vl-defines-p acl2::x))
           (implies (and (vl-defines-p acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (vl-defines-p acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-set-equiv-congruence

    (defthm vl-defines-p-set-equiv-congruence
      (implies (set-equiv acl2::x acl2::y)
               (equal (vl-defines-p acl2::x)
                      (vl-defines-p acl2::y)))
      :rule-classes :congruence)

    Theorem: vl-defines-p-of-set-difference-equal

    (defthm vl-defines-p-of-set-difference-equal
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersection-equal-1

    (defthm vl-defines-p-of-intersection-equal-1
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-intersection-equal-2

    (defthm vl-defines-p-of-intersection-equal-2
      (implies (vl-defines-p (double-rewrite acl2::y))
               (vl-defines-p (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-union-equal

    (defthm vl-defines-p-of-union-equal
      (equal (vl-defines-p (union-equal acl2::x acl2::y))
             (and (vl-defines-p (list-fix acl2::x))
                  (vl-defines-p (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-take

    (defthm vl-defines-p-of-take
      (implies (vl-defines-p (double-rewrite acl2::x))
               (iff (vl-defines-p (take acl2::n acl2::x))
                    (or (vl-define-p nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-repeat

    (defthm vl-defines-p-of-repeat
      (iff (vl-defines-p (repeat acl2::n acl2::x))
           (or (vl-define-p acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-define-p-of-nth-when-vl-defines-p

    (defthm vl-define-p-of-nth-when-vl-defines-p
      (implies (and (vl-defines-p acl2::x)
                    (< (nfix acl2::n) (len acl2::x)))
               (vl-define-p (nth acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-update-nth

    (defthm vl-defines-p-of-update-nth
      (implies (vl-defines-p (double-rewrite acl2::x))
               (iff (vl-defines-p (update-nth acl2::n acl2::y acl2::x))
                    (and (vl-define-p acl2::y)
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (vl-define-p nil)))))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-butlast

    (defthm vl-defines-p-of-butlast
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-nthcdr

    (defthm vl-defines-p-of-nthcdr
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-last

    (defthm vl-defines-p-of-last
      (implies (vl-defines-p (double-rewrite acl2::x))
               (vl-defines-p (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-remove

    (defthm vl-defines-p-of-remove
      (implies (vl-defines-p acl2::x)
               (vl-defines-p (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: vl-defines-p-of-revappend

    (defthm vl-defines-p-of-revappend
      (equal (vl-defines-p (revappend acl2::x acl2::y))
             (and (vl-defines-p (list-fix acl2::x))
                  (vl-defines-p acl2::y)))
      :rule-classes ((:rewrite)))