• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
          • Bit-blasting
          • Functions
          • 4vmask
          • Why-infinite-width
          • Svex-vars
          • Evaluation
            • Svex-xeval
            • Svex-mono-eval
            • Svex-eval
            • Svex-apply
            • Svex-env
            • Svex-alist-eval
              • Svex-alist-eval-aux
              • Svar-boolmasks-lookup
              • Svex-s4eval
              • Svexlist-unquote
              • Svex-alist-eval-for-symbolic
              • Svexlist-eval
              • Svexlist-quotesp
              • Svar-boolmasks
              • Svexlist-s4eval
              • Svexlist-eval-for-symbolic
            • Values
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Svex-alist-eval

    Svex-alist-eval-aux

    Signature
    (svex-alist-eval-aux x env) → xx
    Arguments
    x — Guard (svex-alist-p x).
    env — Guard (svex-env-p env).
    Returns
    xx — Type (svex-env-p xx).

    Definitions and Theorems

    Function: svex-alist-eval-aux

    (defun svex-alist-eval-aux (x env)
      (declare (xargs :guard (and (svex-alist-p x)
                                  (svex-env-p env))))
      (let ((__function__ 'svex-alist-eval-aux))
        (declare (ignorable __function__))
        (if (atom x)
            nil
          (if (mbt (and (consp (car x)) (svar-p (caar x))))
              (cons (cons (caar x) (svex-eval (cdar x) env))
                    (svex-alist-eval-aux (cdr x) env))
            (svex-alist-eval-aux (cdr x) env)))))

    Theorem: svex-env-p-of-svex-alist-eval-aux

    (defthm svex-env-p-of-svex-alist-eval-aux
      (b* ((xx (svex-alist-eval-aux x env)))
        (svex-env-p xx))
      :rule-classes :rewrite)