Basic equivalence relation for trace-alist structures.
Function:
(defun trace-alist-equiv$inline (x y) (declare (xargs :guard (and (trace-alist-p x) (trace-alist-p y)))) (equal (trace-alist-fix x) (trace-alist-fix y)))
Theorem:
(defthm trace-alist-equiv-is-an-equivalence (and (booleanp (trace-alist-equiv x y)) (trace-alist-equiv x x) (implies (trace-alist-equiv x y) (trace-alist-equiv y x)) (implies (and (trace-alist-equiv x y) (trace-alist-equiv y z)) (trace-alist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm trace-alist-equiv-implies-equal-trace-alist-fix-1 (implies (trace-alist-equiv x x-equiv) (equal (trace-alist-fix x) (trace-alist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm trace-alist-fix-under-trace-alist-equiv (trace-alist-equiv (trace-alist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-trace-alist-fix-1-forward-to-trace-alist-equiv (implies (equal (trace-alist-fix x) y) (trace-alist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-trace-alist-fix-2-forward-to-trace-alist-equiv (implies (equal x (trace-alist-fix y)) (trace-alist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm trace-alist-equiv-of-trace-alist-fix-1-forward (implies (trace-alist-equiv (trace-alist-fix x) y) (trace-alist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm trace-alist-equiv-of-trace-alist-fix-2-forward (implies (trace-alist-equiv x (trace-alist-fix y)) (trace-alist-equiv x y)) :rule-classes :forward-chaining)