(comp-db-fix x) is an ACL2::fty alist fixing function that follows the fix-keys strategy.
Note that in the execution this is just an inline identity function.
Function:
(defun comp-db-fix$inline (x) (declare (xargs :guard (comp-dbp x))) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (acl2::str-fix (caar x)) (comp-db-entry-fix (cdar x))) (comp-db-fix (cdr x))) (comp-db-fix (cdr x)))) :exec x))
Theorem:
(defthm comp-dbp-of-comp-db-fix (b* ((fty::newx (comp-db-fix$inline x))) (comp-dbp fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm comp-db-fix-when-comp-dbp (implies (comp-dbp x) (equal (comp-db-fix x) x)))
Function:
(defun comp-db-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (comp-dbp acl2::x) (comp-dbp acl2::y)))) (equal (comp-db-fix acl2::x) (comp-db-fix acl2::y)))
Theorem:
(defthm comp-db-equiv-is-an-equivalence (and (booleanp (comp-db-equiv x y)) (comp-db-equiv x x) (implies (comp-db-equiv x y) (comp-db-equiv y x)) (implies (and (comp-db-equiv x y) (comp-db-equiv y z)) (comp-db-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm comp-db-equiv-implies-equal-comp-db-fix-1 (implies (comp-db-equiv acl2::x x-equiv) (equal (comp-db-fix acl2::x) (comp-db-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm comp-db-fix-under-comp-db-equiv (comp-db-equiv (comp-db-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-comp-db-fix-1-forward-to-comp-db-equiv (implies (equal (comp-db-fix acl2::x) acl2::y) (comp-db-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-comp-db-fix-2-forward-to-comp-db-equiv (implies (equal acl2::x (comp-db-fix acl2::y)) (comp-db-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm comp-db-equiv-of-comp-db-fix-1-forward (implies (comp-db-equiv (comp-db-fix acl2::x) acl2::y) (comp-db-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm comp-db-equiv-of-comp-db-fix-2-forward (implies (comp-db-equiv acl2::x (comp-db-fix acl2::y)) (comp-db-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-str-fix-k-under-comp-db-equiv (comp-db-equiv (cons (cons (acl2::str-fix acl2::k) acl2::v) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-streqv-congruence-on-k-under-comp-db-equiv (implies (acl2::streqv acl2::k k-equiv) (comp-db-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons k-equiv acl2::v) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-comp-db-entry-fix-v-under-comp-db-equiv (comp-db-equiv (cons (cons acl2::k (comp-db-entry-fix acl2::v)) acl2::x) (cons (cons acl2::k acl2::v) acl2::x)))
Theorem:
(defthm cons-comp-db-entry-equiv-congruence-on-v-under-comp-db-equiv (implies (comp-db-entry-equiv acl2::v v-equiv) (comp-db-equiv (cons (cons acl2::k acl2::v) acl2::x) (cons (cons acl2::k v-equiv) acl2::x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-comp-db-fix-y-under-comp-db-equiv (comp-db-equiv (cons acl2::x (comp-db-fix acl2::y)) (cons acl2::x acl2::y)))
Theorem:
(defthm cons-comp-db-equiv-congruence-on-y-under-comp-db-equiv (implies (comp-db-equiv acl2::y y-equiv) (comp-db-equiv (cons acl2::x acl2::y) (cons acl2::x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm comp-db-fix-of-acons (equal (comp-db-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (acl2::str-fix acl2::a) (comp-db-entry-fix acl2::b)) (comp-db-fix x))))
Theorem:
(defthm comp-db-fix-of-append (equal (comp-db-fix (append std::a std::b)) (append (comp-db-fix std::a) (comp-db-fix std::b))))
Theorem:
(defthm consp-car-of-comp-db-fix (equal (consp (car (comp-db-fix x))) (consp (comp-db-fix x))))