• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
          • Syntax-for-tools
            • Formalized-subset
            • Mapping-to-language-definition
            • Input-files
            • Compilation-database
              • Comp-db-entry
              • Comp-db-arg
              • Json-to-comp-db-entry
              • Json-to-comp-db-entry-list
              • To-preprocess-db
              • To-preprocess-map
              • Comp-db-arguments-absolute-dirs
              • Comp-db-keep-only-preprocessor-args
              • Json-to-comp-db
              • Json-to-comp-db-arguments
              • Comp-db-relativize-keys
              • Json-to-comp-db-get-exec-and-arguments
              • Relativize-path
              • Preprocess-map-from-comp-file
              • Json-to-comp-db-exec-and-arguments
              • Comp-db-arguments-keep-only-preprocessor-args
              • Comp-db-arguments-escape-for-shell
              • Parse-comp-db
              • Json-to-comp-db-get-directory
              • Json-to-comp-db-get-output
              • Json-to-comp-db-get-file
              • Comp-db-drop-shared
              • Comp-db-drop-non-c
              • Comp-db-arg-list-to-string-list
              • Comp-db-absolute-dirs
              • Comp-db-escape-for-shell
              • Json-to-comp-db-try-parse-short-option
              • Preprocess-db-to-map
              • Comp-db-arg-to-string
              • Comp-db
                • Comp-dbp
                  • Comp-db-fix
                  • Comp-db-equiv
                • Json-to-comp-db-try-parse-equal-arg
                • Defpreprocess-map-fn
                • String-escape-for-shell
                • Comp-db-arg-list
                • Irr-comp-db-arg
                • Show-warnings
                • *cc-options-space-sep*
                • *cc-options-equal-sep*
                • *cc-options-dir*
              • Printer
              • Output-files
              • Abstract-syntax-operations
              • Implementation-environments
              • Abstract-syntax
              • Concrete-syntax
              • Disambiguation
              • Validation
              • Gcc-builtins
              • Preprocessing
              • Parsing
            • Atc
            • Transformation-tools
            • Language
            • Representation
            • Insertion-sort
            • Pack
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Comp-db

    Comp-dbp

    Recognizer for comp-db.

    Signature
    (comp-dbp x) → *

    Definitions and Theorems

    Function: comp-dbp

    (defun comp-dbp (x)
      (declare (xargs :guard t))
      (if (atom x)
          (eq x nil)
        (and (consp (car x))
             (stringp (caar x))
             (comp-db-entryp (cdar x))
             (comp-dbp (cdr x)))))

    Theorem: comp-dbp-of-revappend

    (defthm comp-dbp-of-revappend
      (equal (comp-dbp (revappend acl2::x acl2::y))
             (and (comp-dbp (list-fix acl2::x))
                  (comp-dbp acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-remove

    (defthm comp-dbp-of-remove
      (implies (comp-dbp acl2::x)
               (comp-dbp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-last

    (defthm comp-dbp-of-last
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-nthcdr

    (defthm comp-dbp-of-nthcdr
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-butlast

    (defthm comp-dbp-of-butlast
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-update-nth

    (defthm comp-dbp-of-update-nth
      (implies (comp-dbp (double-rewrite acl2::x))
               (iff (comp-dbp (update-nth acl2::n acl2::y acl2::x))
                    (and (and (consp acl2::y)
                              (stringp (car acl2::y))
                              (comp-db-entryp (cdr acl2::y)))
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (and (consp nil)
                                  (stringp (car nil))
                                  (comp-db-entryp (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-repeat

    (defthm comp-dbp-of-repeat
      (iff (comp-dbp (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (stringp (car acl2::x))
                    (comp-db-entryp (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-take

    (defthm comp-dbp-of-take
      (implies (comp-dbp (double-rewrite acl2::x))
               (iff (comp-dbp (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (stringp (car nil))
                             (comp-db-entryp (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-union-equal

    (defthm comp-dbp-of-union-equal
      (equal (comp-dbp (union-equal acl2::x acl2::y))
             (and (comp-dbp (list-fix acl2::x))
                  (comp-dbp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersection-equal-2

    (defthm comp-dbp-of-intersection-equal-2
      (implies (comp-dbp (double-rewrite acl2::y))
               (comp-dbp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersection-equal-1

    (defthm comp-dbp-of-intersection-equal-1
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-set-difference-equal

    (defthm comp-dbp-of-set-difference-equal
      (implies (comp-dbp acl2::x)
               (comp-dbp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-when-subsetp-equal

    (defthm comp-dbp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (comp-dbp acl2::y))
                    (equal (comp-dbp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (comp-dbp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (comp-dbp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-rcons

    (defthm comp-dbp-of-rcons
      (iff (comp-dbp (rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (comp-db-entryp (cdr acl2::a)))
                (comp-dbp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-append

    (defthm comp-dbp-of-append
      (equal (comp-dbp (append acl2::a acl2::b))
             (and (comp-dbp (list-fix acl2::a))
                  (comp-dbp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-rev

    (defthm comp-dbp-of-rev
      (equal (comp-dbp (rev acl2::x))
             (comp-dbp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-duplicated-members

    (defthm comp-dbp-of-duplicated-members
      (implies (comp-dbp acl2::x)
               (comp-dbp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-difference

    (defthm comp-dbp-of-difference
      (implies (comp-dbp acl2::x)
               (comp-dbp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersect-2

    (defthm comp-dbp-of-intersect-2
      (implies (comp-dbp acl2::y)
               (comp-dbp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-intersect-1

    (defthm comp-dbp-of-intersect-1
      (implies (comp-dbp acl2::x)
               (comp-dbp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-union

    (defthm comp-dbp-of-union
      (iff (comp-dbp (union acl2::x acl2::y))
           (and (comp-dbp (sfix acl2::x))
                (comp-dbp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-mergesort

    (defthm comp-dbp-of-mergesort
      (iff (comp-dbp (mergesort acl2::x))
           (comp-dbp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-delete

    (defthm comp-dbp-of-delete
      (implies (comp-dbp acl2::x)
               (comp-dbp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-insert

    (defthm comp-dbp-of-insert
      (iff (comp-dbp (insert acl2::a acl2::x))
           (and (comp-dbp (sfix acl2::x))
                (and (consp acl2::a)
                     (stringp (car acl2::a))
                     (comp-db-entryp (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-sfix

    (defthm comp-dbp-of-sfix
      (iff (comp-dbp (sfix acl2::x))
           (or (comp-dbp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-list-fix

    (defthm comp-dbp-of-list-fix
      (implies (comp-dbp acl2::x)
               (comp-dbp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-comp-dbp-compound-recognizer

    (defthm true-listp-when-comp-dbp-compound-recognizer
      (implies (comp-dbp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: comp-dbp-when-not-consp

    (defthm comp-dbp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (comp-dbp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-cdr-when-comp-dbp

    (defthm comp-dbp-of-cdr-when-comp-dbp
      (implies (comp-dbp (double-rewrite acl2::x))
               (comp-dbp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-cons

    (defthm comp-dbp-of-cons
      (equal (comp-dbp (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (stringp (car acl2::a))
                       (comp-db-entryp (cdr acl2::a)))
                  (comp-dbp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-make-fal

    (defthm comp-dbp-of-make-fal
      (implies (and (comp-dbp acl2::x)
                    (comp-dbp acl2::y))
               (comp-dbp (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-db-entryp-of-cdr-when-member-equal-of-comp-dbp

    (defthm comp-db-entryp-of-cdr-when-member-equal-of-comp-dbp
      (and (implies (and (comp-dbp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (comp-db-entryp (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (comp-dbp acl2::x))
                    (comp-db-entryp (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-car-when-member-equal-of-comp-dbp

    (defthm stringp-of-car-when-member-equal-of-comp-dbp
      (and (implies (and (comp-dbp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (stringp (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (comp-dbp acl2::x))
                    (stringp (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-comp-dbp

    (defthm consp-when-member-equal-of-comp-dbp
      (implies (and (comp-dbp acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite :backchain-limit-lst (0 0)
                 :corollary (implies (if (member-equal acl2::a acl2::x)
                                         (comp-dbp acl2::x)
                                       'nil)
                                     (consp acl2::a)))))

    Theorem: comp-dbp-of-remove-assoc

    (defthm comp-dbp-of-remove-assoc
      (implies (comp-dbp acl2::x)
               (comp-dbp (remove-assoc-equal acl2::name acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-put-assoc

    (defthm comp-dbp-of-put-assoc
     (implies
          (and (comp-dbp acl2::x))
          (iff (comp-dbp (put-assoc-equal acl2::name acl2::val acl2::x))
               (and (stringp acl2::name)
                    (comp-db-entryp acl2::val))))
     :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-fast-alist-clean

    (defthm comp-dbp-of-fast-alist-clean
      (implies (comp-dbp acl2::x)
               (comp-dbp (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-hons-shrink-alist

    (defthm comp-dbp-of-hons-shrink-alist
      (implies (and (comp-dbp acl2::x)
                    (comp-dbp acl2::y))
               (comp-dbp (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: comp-dbp-of-hons-acons

    (defthm comp-dbp-of-hons-acons
      (equal (comp-dbp (hons-acons acl2::a acl2::n acl2::x))
             (and (stringp acl2::a)
                  (comp-db-entryp acl2::n)
                  (comp-dbp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: comp-db-entryp-of-cdr-of-hons-assoc-equal-when-comp-dbp

    (defthm comp-db-entryp-of-cdr-of-hons-assoc-equal-when-comp-dbp
     (implies
          (comp-dbp acl2::x)
          (iff (comp-db-entryp (cdr (hons-assoc-equal acl2::k acl2::x)))
               (or (hons-assoc-equal acl2::k acl2::x)
                   (comp-db-entryp nil))))
     :rule-classes ((:rewrite)))

    Theorem: alistp-when-comp-dbp-rewrite

    (defthm alistp-when-comp-dbp-rewrite
      (implies (comp-dbp acl2::x)
               (alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-comp-dbp

    (defthm alistp-when-comp-dbp
      (implies (comp-dbp acl2::x)
               (alistp acl2::x))
      :rule-classes :tau-system)

    Theorem: comp-db-entryp-of-cdar-when-comp-dbp

    (defthm comp-db-entryp-of-cdar-when-comp-dbp
      (implies (comp-dbp acl2::x)
               (iff (comp-db-entryp (cdar acl2::x))
                    (or (consp acl2::x)
                        (comp-db-entryp nil))))
      :rule-classes ((:rewrite)))

    Theorem: stringp-of-caar-when-comp-dbp

    (defthm stringp-of-caar-when-comp-dbp
      (implies (comp-dbp acl2::x)
               (iff (stringp (caar acl2::x))
                    (or (consp acl2::x) (stringp nil))))
      :rule-classes ((:rewrite)))