Recognizer for comp-db.
(comp-dbp x) → *
Function:
(defun comp-dbp (x) (declare (xargs :guard t)) (if (atom x) (eq x nil) (and (consp (car x)) (stringp (caar x)) (comp-db-entryp (cdar x)) (comp-dbp (cdr x)))))
Theorem:
(defthm comp-dbp-of-revappend (equal (comp-dbp (revappend acl2::x acl2::y)) (and (comp-dbp (list-fix acl2::x)) (comp-dbp acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-remove (implies (comp-dbp acl2::x) (comp-dbp (remove acl2::a acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-last (implies (comp-dbp (double-rewrite acl2::x)) (comp-dbp (last acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-nthcdr (implies (comp-dbp (double-rewrite acl2::x)) (comp-dbp (nthcdr acl2::n acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-butlast (implies (comp-dbp (double-rewrite acl2::x)) (comp-dbp (butlast acl2::x acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-update-nth (implies (comp-dbp (double-rewrite acl2::x)) (iff (comp-dbp (update-nth acl2::n acl2::y acl2::x)) (and (and (consp acl2::y) (stringp (car acl2::y)) (comp-db-entryp (cdr acl2::y))) (or (<= (nfix acl2::n) (len acl2::x)) (and (consp nil) (stringp (car nil)) (comp-db-entryp (cdr nil))))))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-repeat (iff (comp-dbp (repeat acl2::n acl2::x)) (or (and (consp acl2::x) (stringp (car acl2::x)) (comp-db-entryp (cdr acl2::x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-take (implies (comp-dbp (double-rewrite acl2::x)) (iff (comp-dbp (take acl2::n acl2::x)) (or (and (consp nil) (stringp (car nil)) (comp-db-entryp (cdr nil))) (<= (nfix acl2::n) (len acl2::x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-union-equal (equal (comp-dbp (union-equal acl2::x acl2::y)) (and (comp-dbp (list-fix acl2::x)) (comp-dbp (double-rewrite acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-intersection-equal-2 (implies (comp-dbp (double-rewrite acl2::y)) (comp-dbp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-intersection-equal-1 (implies (comp-dbp (double-rewrite acl2::x)) (comp-dbp (intersection-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-set-difference-equal (implies (comp-dbp acl2::x) (comp-dbp (set-difference-equal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-when-subsetp-equal (and (implies (and (subsetp-equal acl2::x acl2::y) (comp-dbp acl2::y)) (equal (comp-dbp acl2::x) (true-listp acl2::x))) (implies (and (comp-dbp acl2::y) (subsetp-equal acl2::x acl2::y)) (equal (comp-dbp acl2::x) (true-listp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-rcons (iff (comp-dbp (rcons acl2::a acl2::x)) (and (and (consp acl2::a) (stringp (car acl2::a)) (comp-db-entryp (cdr acl2::a))) (comp-dbp (list-fix acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-append (equal (comp-dbp (append acl2::a acl2::b)) (and (comp-dbp (list-fix acl2::a)) (comp-dbp acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-rev (equal (comp-dbp (rev acl2::x)) (comp-dbp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-duplicated-members (implies (comp-dbp acl2::x) (comp-dbp (duplicated-members acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-difference (implies (comp-dbp acl2::x) (comp-dbp (difference acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-intersect-2 (implies (comp-dbp acl2::y) (comp-dbp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-intersect-1 (implies (comp-dbp acl2::x) (comp-dbp (intersect acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-union (iff (comp-dbp (union acl2::x acl2::y)) (and (comp-dbp (sfix acl2::x)) (comp-dbp (sfix acl2::y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-mergesort (iff (comp-dbp (mergesort acl2::x)) (comp-dbp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-delete (implies (comp-dbp acl2::x) (comp-dbp (delete acl2::k acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-insert (iff (comp-dbp (insert acl2::a acl2::x)) (and (comp-dbp (sfix acl2::x)) (and (consp acl2::a) (stringp (car acl2::a)) (comp-db-entryp (cdr acl2::a))))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-sfix (iff (comp-dbp (sfix acl2::x)) (or (comp-dbp acl2::x) (not (setp acl2::x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-list-fix (implies (comp-dbp acl2::x) (comp-dbp (list-fix acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-comp-dbp-compound-recognizer (implies (comp-dbp acl2::x) (true-listp acl2::x)) :rule-classes :compound-recognizer)
Theorem:
(defthm comp-dbp-when-not-consp (implies (not (consp acl2::x)) (equal (comp-dbp acl2::x) (not acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-cdr-when-comp-dbp (implies (comp-dbp (double-rewrite acl2::x)) (comp-dbp (cdr acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-cons (equal (comp-dbp (cons acl2::a acl2::x)) (and (and (consp acl2::a) (stringp (car acl2::a)) (comp-db-entryp (cdr acl2::a))) (comp-dbp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-make-fal (implies (and (comp-dbp acl2::x) (comp-dbp acl2::y)) (comp-dbp (make-fal acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-db-entryp-of-cdr-when-member-equal-of-comp-dbp (and (implies (and (comp-dbp acl2::x) (member-equal acl2::a acl2::x)) (comp-db-entryp (cdr acl2::a))) (implies (and (member-equal acl2::a acl2::x) (comp-dbp acl2::x)) (comp-db-entryp (cdr acl2::a)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-car-when-member-equal-of-comp-dbp (and (implies (and (comp-dbp acl2::x) (member-equal acl2::a acl2::x)) (stringp (car acl2::a))) (implies (and (member-equal acl2::a acl2::x) (comp-dbp acl2::x)) (stringp (car acl2::a)))) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-when-member-equal-of-comp-dbp (implies (and (comp-dbp acl2::x) (member-equal acl2::a acl2::x)) (consp acl2::a)) :rule-classes ((:rewrite :backchain-limit-lst (0 0)) (:rewrite :backchain-limit-lst (0 0) :corollary (implies (if (member-equal acl2::a acl2::x) (comp-dbp acl2::x) 'nil) (consp acl2::a)))))
Theorem:
(defthm comp-dbp-of-remove-assoc (implies (comp-dbp acl2::x) (comp-dbp (remove-assoc-equal acl2::name acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-put-assoc (implies (and (comp-dbp acl2::x)) (iff (comp-dbp (put-assoc-equal acl2::name acl2::val acl2::x)) (and (stringp acl2::name) (comp-db-entryp acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-fast-alist-clean (implies (comp-dbp acl2::x) (comp-dbp (fast-alist-clean acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-hons-shrink-alist (implies (and (comp-dbp acl2::x) (comp-dbp acl2::y)) (comp-dbp (hons-shrink-alist acl2::x acl2::y))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-dbp-of-hons-acons (equal (comp-dbp (hons-acons acl2::a acl2::n acl2::x)) (and (stringp acl2::a) (comp-db-entryp acl2::n) (comp-dbp acl2::x))) :rule-classes ((:rewrite)))
Theorem:
(defthm comp-db-entryp-of-cdr-of-hons-assoc-equal-when-comp-dbp (implies (comp-dbp acl2::x) (iff (comp-db-entryp (cdr (hons-assoc-equal acl2::k acl2::x))) (or (hons-assoc-equal acl2::k acl2::x) (comp-db-entryp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-comp-dbp-rewrite (implies (comp-dbp acl2::x) (alistp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-comp-dbp (implies (comp-dbp acl2::x) (alistp acl2::x)) :rule-classes :tau-system)
Theorem:
(defthm comp-db-entryp-of-cdar-when-comp-dbp (implies (comp-dbp acl2::x) (iff (comp-db-entryp (cdar acl2::x)) (or (consp acl2::x) (comp-db-entryp nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm stringp-of-caar-when-comp-dbp (implies (comp-dbp acl2::x) (iff (stringp (caar acl2::x)) (or (consp acl2::x) (stringp nil)))) :rule-classes ((:rewrite)))