Basic equivalence relation for comp-db-arg structures.
Function:
(defun comp-db-arg-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (comp-db-argp acl2::x) (comp-db-argp acl2::y)))) (equal (comp-db-arg-fix acl2::x) (comp-db-arg-fix acl2::y)))
Theorem:
(defthm comp-db-arg-equiv-is-an-equivalence (and (booleanp (comp-db-arg-equiv x y)) (comp-db-arg-equiv x x) (implies (comp-db-arg-equiv x y) (comp-db-arg-equiv y x)) (implies (and (comp-db-arg-equiv x y) (comp-db-arg-equiv y z)) (comp-db-arg-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm comp-db-arg-equiv-implies-equal-comp-db-arg-fix-1 (implies (comp-db-arg-equiv acl2::x x-equiv) (equal (comp-db-arg-fix acl2::x) (comp-db-arg-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm comp-db-arg-fix-under-comp-db-arg-equiv (comp-db-arg-equiv (comp-db-arg-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-comp-db-arg-fix-1-forward-to-comp-db-arg-equiv (implies (equal (comp-db-arg-fix acl2::x) acl2::y) (comp-db-arg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-comp-db-arg-fix-2-forward-to-comp-db-arg-equiv (implies (equal acl2::x (comp-db-arg-fix acl2::y)) (comp-db-arg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm comp-db-arg-equiv-of-comp-db-arg-fix-1-forward (implies (comp-db-arg-equiv (comp-db-arg-fix acl2::x) acl2::y) (comp-db-arg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm comp-db-arg-equiv-of-comp-db-arg-fix-2-forward (implies (comp-db-arg-equiv acl2::x (comp-db-arg-fix acl2::y)) (comp-db-arg-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)