• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
      • Std/lists
      • Omaps
      • Std/alists
      • Obags
      • Std/util
      • Std/strings
      • Std/osets
      • Std/io
      • Std/basic
        • Maybe-stringp
          • Character-list
            • Maybe-string
            • Maybe-string-fix
          • Maybe-natp
          • Two-nats-measure
          • Impossible
          • Bytep
          • Nat-list-measure
          • Maybe-posp
          • Nibblep
          • Organize-symbols-by-pkg
          • Organize-symbols-by-name
          • Lnfix
          • Good-valuep
          • Streqv
          • Chareqv
          • Symbol-package-name-non-cl
          • Arith-equivs
          • Induction-schemes
          • Maybe-integerp
          • Char-fix
          • Pos-fix
          • Symbol-package-name-lst
          • Mbt$
          • Maybe-bitp
          • Good-pseudo-termp
          • Str-fix
          • Maybe-string-fix
          • Nonkeyword-listp
          • Lifix
          • Bfix
          • Std/basic/if*
          • Impliez
          • Tuplep
          • Std/basic/intern-in-package-of-symbol
          • Lbfix
          • Std/basic/symbol-name-lst
          • True
          • Std/basic/rfix
          • Std/basic/realfix
          • Std/basic/member-symbol-name
          • Std/basic/fix
          • False
          • Std/basic/nfix
          • Std/basic/ifix
        • Std/system
        • Std/typed-lists
        • Std/bitsets
        • Std/testing
        • Std/typed-alists
        • Std/stobjs
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Fty-extensions
    • Specific-types
    • Maybe-stringp

    Character-list

    Fixtype of lists of characters.

    The recognizer is character-listp and the fixer is str::character-list-fix.

    Definitions and Theorems

    Function: character-list-equiv$inline

    (defun character-list-equiv$inline (x y)
      (declare (xargs :guard (and (character-listp x)
                                  (character-listp y))))
      (equal (str::character-list-fix x)
             (str::character-list-fix y)))

    Theorem: character-list-equiv-is-an-equivalence

    (defthm character-list-equiv-is-an-equivalence
      (and (booleanp (character-list-equiv x y))
           (character-list-equiv x x)
           (implies (character-list-equiv x y)
                    (character-list-equiv y x))
           (implies (and (character-list-equiv x y)
                         (character-list-equiv y z))
                    (character-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: character-list-equiv-implies-equal-character-list-fix-1

    (defthm character-list-equiv-implies-equal-character-list-fix-1
      (implies (character-list-equiv x x-equiv)
               (equal (str::character-list-fix x)
                      (str::character-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: character-list-fix-under-character-list-equiv

    (defthm character-list-fix-under-character-list-equiv
      (character-list-equiv (str::character-list-fix x)
                            x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-character-list-fix-1-forward-to-character-list-equiv

    (defthm
          equal-of-character-list-fix-1-forward-to-character-list-equiv
      (implies (equal (str::character-list-fix x) y)
               (character-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: equal-of-character-list-fix-2-forward-to-character-list-equiv

    (defthm
          equal-of-character-list-fix-2-forward-to-character-list-equiv
      (implies (equal x (str::character-list-fix y))
               (character-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: character-list-equiv-of-character-list-fix-1-forward

    (defthm character-list-equiv-of-character-list-fix-1-forward
      (implies (character-list-equiv (str::character-list-fix x)
                                     y)
               (character-list-equiv x y))
      :rule-classes :forward-chaining)

    Theorem: character-list-equiv-of-character-list-fix-2-forward

    (defthm character-list-equiv-of-character-list-fix-2-forward
      (implies (character-list-equiv x (str::character-list-fix y))
               (character-list-equiv x y))
      :rule-classes :forward-chaining)