• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
          • Defbyte
          • Defresult
          • Fold
          • Specific-types
            • Pos-list
            • Defbyte-standard-instances
            • Defbytelist-standard-instances
            • Byte-list
            • Byte
            • String-option
            • Pos-option
            • Nibble
            • Nat-option
            • Ubyte32-option
            • Byte-list20
            • Byte-list32
            • Byte-list64
            • Pseudo-event-form
            • Natoption/natoptionlist
            • Nati
            • Character-list
            • Nat/natlist
            • Maybe-string
            • Nibble-list
            • Natoption/natoptionlist-result
            • Nat/natlist-result
            • Nat-option-list-result
            • Set
            • String-result
            • String-list-result
            • Nat-result
            • Nat-option-result
            • Nat-list-result
            • Maybe-string-result
            • Integer-result
            • Character-result
            • Character-list-result
            • Boolean-result
            • Map
            • Bag
            • Pos-set
            • Hex-digit-char-list
            • Dec-digit-char-list
              • Dec-digit-char-list-fix
                • Dec-digit-char-list-equiv
              • Pseudo-event-form-list
              • Nat-option-list
              • Character-any-map
              • Any-nat-map
              • Symbol-set
              • String-set
              • Nat-set
              • Character-set
              • Oct-digit-char-list
              • Bin-digit-char-list
              • Bit-list
            • Defsubtype
            • Defset
            • Defflatsum
            • Deflist-of-len
            • Pos-list
            • Defomap
            • Defbytelist
            • Defbyte-standard-instances
            • Deffixtype-alias
            • Defbytelist-standard-instances
            • Defunit
            • Byte-list
            • Database
            • Byte
            • String-option
            • Pos-option
            • Nibble
            • Nat-option
            • Ubyte32-option
            • Byte-list20
            • Byte-list32
            • Byte-list64
            • Pseudo-event-form
            • Natoption/natoptionlist
            • Nati
            • Character-list
            • Nat/natlist
            • Maybe-string
            • Nibble-list
            • Natoption/natoptionlist-result
            • Nat/natlist-result
            • Nat-option-list-result
            • Set
            • String-result
            • String-list-result
            • Nat-result
            • Nat-option-result
            • Nat-list-result
            • Maybe-string-result
            • Integer-result
            • Character-result
            • Character-list-result
            • Boolean-result
            • Map
            • Dependencies
            • Bag
            • Pos-set
            • Hex-digit-char-list
            • Dec-digit-char-list
              • Dec-digit-char-list-fix
                • Dec-digit-char-list-equiv
              • Pseudo-event-form-list
              • Nat-option-list
              • Character-any-map
              • Any-nat-map
              • Symbol-set
              • String-set
              • Nat-set
              • Character-set
              • Oct-digit-char-list
              • Bin-digit-char-list
              • Bit-list
            • Isar
            • Kestrel-utilities
            • Set
            • C
            • Soft
            • Bv
            • Imp-language
            • Ethereum
            • Event-macros
            • Java
            • Riscv
            • Bitcoin
            • Zcash
            • Yul
            • ACL2-programming-language
            • Prime-fields
            • Json
            • Syntheto
            • File-io-light
            • Cryptography
            • Number-theory
            • Axe
            • Lists-light
            • Builtins
            • Solidity
            • Helpers
            • Htclient
            • Typed-lists-light
            • Arithmetic-light
          • X86isa
          • Axe
          • Execloader
        • Math
        • Testing-utilities
      • Dec-digit-char-list

      Dec-digit-char-list-fix

      (dec-digit-char-list-fix x) is a usual ACL2::fty list fixing function.

      Signature
      (dec-digit-char-list-fix x) → fty::newx
      Arguments
      x — Guard (dec-digit-char-listp x).
      Returns
      fty::newx — Type (dec-digit-char-listp fty::newx).

      In the logic, we apply dec-digit-char-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

      Definitions and Theorems

      Function: dec-digit-char-list-fix$inline

      (defun dec-digit-char-list-fix$inline (x)
        (declare (xargs :guard (dec-digit-char-listp x)))
        (let ((acl2::__function__ 'dec-digit-char-list-fix))
          (declare (ignorable acl2::__function__))
          (mbe :logic
               (if (atom x)
                   nil
                 (cons (dec-digit-char-fix (car x))
                       (dec-digit-char-list-fix (cdr x))))
               :exec x)))

      Theorem: dec-digit-char-listp-of-dec-digit-char-list-fix

      (defthm dec-digit-char-listp-of-dec-digit-char-list-fix
        (b* ((fty::newx (dec-digit-char-list-fix$inline x)))
          (dec-digit-char-listp fty::newx))
        :rule-classes :rewrite)

      Theorem: dec-digit-char-list-fix-when-dec-digit-char-listp

      (defthm dec-digit-char-list-fix-when-dec-digit-char-listp
        (implies (dec-digit-char-listp x)
                 (equal (dec-digit-char-list-fix x) x)))

      Function: dec-digit-char-list-equiv$inline

      (defun dec-digit-char-list-equiv$inline (x y)
        (declare (xargs :guard (and (dec-digit-char-listp x)
                                    (dec-digit-char-listp y))))
        (equal (dec-digit-char-list-fix x)
               (dec-digit-char-list-fix y)))

      Theorem: dec-digit-char-list-equiv-is-an-equivalence

      (defthm dec-digit-char-list-equiv-is-an-equivalence
        (and (booleanp (dec-digit-char-list-equiv x y))
             (dec-digit-char-list-equiv x x)
             (implies (dec-digit-char-list-equiv x y)
                      (dec-digit-char-list-equiv y x))
             (implies (and (dec-digit-char-list-equiv x y)
                           (dec-digit-char-list-equiv y z))
                      (dec-digit-char-list-equiv x z)))
        :rule-classes (:equivalence))

      Theorem: dec-digit-char-list-equiv-implies-equal-dec-digit-char-list-fix-1

      (defthm
        dec-digit-char-list-equiv-implies-equal-dec-digit-char-list-fix-1
        (implies (dec-digit-char-list-equiv x x-equiv)
                 (equal (dec-digit-char-list-fix x)
                        (dec-digit-char-list-fix x-equiv)))
        :rule-classes (:congruence))

      Theorem: dec-digit-char-list-fix-under-dec-digit-char-list-equiv

      (defthm dec-digit-char-list-fix-under-dec-digit-char-list-equiv
        (dec-digit-char-list-equiv (dec-digit-char-list-fix x)
                                   x)
        :rule-classes (:rewrite :rewrite-quoted-constant))

      Theorem: equal-of-dec-digit-char-list-fix-1-forward-to-dec-digit-char-list-equiv

      (defthm
       equal-of-dec-digit-char-list-fix-1-forward-to-dec-digit-char-list-equiv
       (implies (equal (dec-digit-char-list-fix x) y)
                (dec-digit-char-list-equiv x y))
       :rule-classes :forward-chaining)

      Theorem: equal-of-dec-digit-char-list-fix-2-forward-to-dec-digit-char-list-equiv

      (defthm
       equal-of-dec-digit-char-list-fix-2-forward-to-dec-digit-char-list-equiv
       (implies (equal x (dec-digit-char-list-fix y))
                (dec-digit-char-list-equiv x y))
       :rule-classes :forward-chaining)

      Theorem: dec-digit-char-list-equiv-of-dec-digit-char-list-fix-1-forward

      (defthm
           dec-digit-char-list-equiv-of-dec-digit-char-list-fix-1-forward
        (implies (dec-digit-char-list-equiv (dec-digit-char-list-fix x)
                                            y)
                 (dec-digit-char-list-equiv x y))
        :rule-classes :forward-chaining)

      Theorem: dec-digit-char-list-equiv-of-dec-digit-char-list-fix-2-forward

      (defthm
           dec-digit-char-list-equiv-of-dec-digit-char-list-fix-2-forward
        (implies (dec-digit-char-list-equiv x (dec-digit-char-list-fix y))
                 (dec-digit-char-list-equiv x y))
        :rule-classes :forward-chaining)

      Theorem: car-of-dec-digit-char-list-fix-x-under-dec-digit-char-equiv

      (defthm car-of-dec-digit-char-list-fix-x-under-dec-digit-char-equiv
        (dec-digit-char-equiv (car (dec-digit-char-list-fix x))
                              (car x)))

      Theorem: car-dec-digit-char-list-equiv-congruence-on-x-under-dec-digit-char-equiv

      (defthm
       car-dec-digit-char-list-equiv-congruence-on-x-under-dec-digit-char-equiv
       (implies (dec-digit-char-list-equiv x x-equiv)
                (dec-digit-char-equiv (car x)
                                      (car x-equiv)))
       :rule-classes :congruence)

      Theorem: cdr-of-dec-digit-char-list-fix-x-under-dec-digit-char-list-equiv

      (defthm
         cdr-of-dec-digit-char-list-fix-x-under-dec-digit-char-list-equiv
        (dec-digit-char-list-equiv (cdr (dec-digit-char-list-fix x))
                                   (cdr x)))

      Theorem: cdr-dec-digit-char-list-equiv-congruence-on-x-under-dec-digit-char-list-equiv

      (defthm
       cdr-dec-digit-char-list-equiv-congruence-on-x-under-dec-digit-char-list-equiv
       (implies (dec-digit-char-list-equiv x x-equiv)
                (dec-digit-char-list-equiv (cdr x)
                                           (cdr x-equiv)))
       :rule-classes :congruence)

      Theorem: cons-of-dec-digit-char-fix-x-under-dec-digit-char-list-equiv

      (defthm cons-of-dec-digit-char-fix-x-under-dec-digit-char-list-equiv
        (dec-digit-char-list-equiv (cons (dec-digit-char-fix x) y)
                                   (cons x y)))

      Theorem: cons-dec-digit-char-equiv-congruence-on-x-under-dec-digit-char-list-equiv

      (defthm
       cons-dec-digit-char-equiv-congruence-on-x-under-dec-digit-char-list-equiv
       (implies (dec-digit-char-equiv x x-equiv)
                (dec-digit-char-list-equiv (cons x y)
                                           (cons x-equiv y)))
       :rule-classes :congruence)

      Theorem: cons-of-dec-digit-char-list-fix-y-under-dec-digit-char-list-equiv

      (defthm
        cons-of-dec-digit-char-list-fix-y-under-dec-digit-char-list-equiv
        (dec-digit-char-list-equiv (cons x (dec-digit-char-list-fix y))
                                   (cons x y)))

      Theorem: cons-dec-digit-char-list-equiv-congruence-on-y-under-dec-digit-char-list-equiv

      (defthm
       cons-dec-digit-char-list-equiv-congruence-on-y-under-dec-digit-char-list-equiv
       (implies (dec-digit-char-list-equiv y y-equiv)
                (dec-digit-char-list-equiv (cons x y)
                                           (cons x y-equiv)))
       :rule-classes :congruence)

      Theorem: consp-of-dec-digit-char-list-fix

      (defthm consp-of-dec-digit-char-list-fix
        (equal (consp (dec-digit-char-list-fix x))
               (consp x)))

      Theorem: dec-digit-char-list-fix-under-iff

      (defthm dec-digit-char-list-fix-under-iff
        (iff (dec-digit-char-list-fix x)
             (consp x)))

      Theorem: dec-digit-char-list-fix-of-cons

      (defthm dec-digit-char-list-fix-of-cons
        (equal (dec-digit-char-list-fix (cons a x))
               (cons (dec-digit-char-fix a)
                     (dec-digit-char-list-fix x))))

      Theorem: len-of-dec-digit-char-list-fix

      (defthm len-of-dec-digit-char-list-fix
        (equal (len (dec-digit-char-list-fix x))
               (len x)))

      Theorem: dec-digit-char-list-fix-of-append

      (defthm dec-digit-char-list-fix-of-append
        (equal (dec-digit-char-list-fix (append std::a std::b))
               (append (dec-digit-char-list-fix std::a)
                       (dec-digit-char-list-fix std::b))))

      Theorem: dec-digit-char-list-fix-of-repeat

      (defthm dec-digit-char-list-fix-of-repeat
        (equal (dec-digit-char-list-fix (repeat n x))
               (repeat n (dec-digit-char-fix x))))

      Theorem: list-equiv-refines-dec-digit-char-list-equiv

      (defthm list-equiv-refines-dec-digit-char-list-equiv
        (implies (list-equiv x y)
                 (dec-digit-char-list-equiv x y))
        :rule-classes :refinement)

      Theorem: nth-of-dec-digit-char-list-fix

      (defthm nth-of-dec-digit-char-list-fix
        (equal (nth n (dec-digit-char-list-fix x))
               (if (< (nfix n) (len x))
                   (dec-digit-char-fix (nth n x))
                 nil)))

      Theorem: dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-append-1

      (defthm
       dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-append-1
       (implies (dec-digit-char-list-equiv x fty::x-equiv)
                (dec-digit-char-list-equiv (append x y)
                                           (append fty::x-equiv y)))
       :rule-classes (:congruence))

      Theorem: dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-append-2

      (defthm
       dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-append-2
       (implies (dec-digit-char-list-equiv y fty::y-equiv)
                (dec-digit-char-list-equiv (append x y)
                                           (append x fty::y-equiv)))
       :rule-classes (:congruence))

      Theorem: dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-nthcdr-2

      (defthm
       dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-nthcdr-2
       (implies (dec-digit-char-list-equiv l l-equiv)
                (dec-digit-char-list-equiv (nthcdr n l)
                                           (nthcdr n l-equiv)))
       :rule-classes (:congruence))

      Theorem: dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-take-2

      (defthm
       dec-digit-char-list-equiv-implies-dec-digit-char-list-equiv-take-2
       (implies (dec-digit-char-list-equiv l l-equiv)
                (dec-digit-char-list-equiv (take n l)
                                           (take n l-equiv)))
       :rule-classes (:congruence))