• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
      • B*
      • Defunc
      • Fty
      • Apt
        • Isodata
          • Isodata-implementation
            • Isodata-event-generation
            • Isodata-fn
            • Isodata-input-processing
              • Isodata-symbol-isomap-alistp
              • Isodata-isomapp
              • Isodata-pos-isomap-alistp
              • Isodata-process-iso
              • Isodata-process-inputs
              • Isodata-process-arg/res-list-iso
              • Isodata-process-isomaps
              • Isodata-fresh-defiso-thm-names
              • Isodata-process-arg/res-list
              • Isodata-process-arg/res-list-iso-list
              • Isodata-process-res
              • Isodata-process-old
              • Isodata-fresh-defiso-name-with-*s-suffix
              • Isodata-process-newp-of-new-name
              • Isodata-process-undefined
              • Isodata-symbol-isomap-alist-stobjp
              • Isodata-pos-isomap-alist-stobjp
              • Isodata-isomap-listp
                • Isodata-isomap-listp-basics
              • Isodata-macro-definition
          • Simplify-defun
          • Tailrec
          • Schemalg
          • Restrict
          • Expdata
          • Casesplit
          • Simplify-term
          • Simplify-defun-sk
          • Parteval
          • Solve
          • Wrap-output
          • Propagate-iso
          • Simplify
          • Finite-difference
          • Drop-irrelevant-params
          • Copy-function
          • Lift-iso
          • Rename-params
          • Utilities
          • Simplify-term-programmatic
          • Simplify-defun-sk-programmatic
          • Simplify-defun-programmatic
          • Simplify-defun+
          • Common-options
          • Common-concepts
        • Std/util
        • Defdata
        • Defrstobj
        • Seq
        • Match-tree
        • Defrstobj
        • With-supporters
        • Def-partial-measure
        • Template-subst
        • Soft
        • Defthm-domain
        • Event-macros
        • Def-universal-equiv
        • Def-saved-obligs
        • With-supporters-after
        • Definec
        • Sig
        • Outer-local
        • Data-structures
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Isodata-isomap-listp

    Isodata-isomap-listp-basics

    Basic theorems about isodata-isomap-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: isodata-isomap-listp-of-cons

    (defthm isodata-isomap-listp-of-cons
      (equal (isodata-isomap-listp (cons acl2::a acl2::x))
             (and (isodata-isomapp acl2::a)
                  (isodata-isomap-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-cdr-when-isodata-isomap-listp

    (defthm isodata-isomap-listp-of-cdr-when-isodata-isomap-listp
      (implies (isodata-isomap-listp (double-rewrite acl2::x))
               (isodata-isomap-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-when-not-consp

    (defthm isodata-isomap-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (isodata-isomap-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomapp-of-car-when-isodata-isomap-listp

    (defthm isodata-isomapp-of-car-when-isodata-isomap-listp
      (implies (isodata-isomap-listp acl2::x)
               (iff (isodata-isomapp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-isodata-isomap-listp-compound-recognizer

    (defthm true-listp-when-isodata-isomap-listp-compound-recognizer
      (implies (isodata-isomap-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: isodata-isomap-listp-of-list-fix

    (defthm isodata-isomap-listp-of-list-fix
      (implies (isodata-isomap-listp acl2::x)
               (isodata-isomap-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-sfix

    (defthm isodata-isomap-listp-of-sfix
      (iff (isodata-isomap-listp (sfix acl2::x))
           (or (isodata-isomap-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-insert

    (defthm isodata-isomap-listp-of-insert
      (iff (isodata-isomap-listp (insert acl2::a acl2::x))
           (and (isodata-isomap-listp (sfix acl2::x))
                (isodata-isomapp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-delete

    (defthm isodata-isomap-listp-of-delete
      (implies (isodata-isomap-listp acl2::x)
               (isodata-isomap-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-mergesort

    (defthm isodata-isomap-listp-of-mergesort
      (iff (isodata-isomap-listp (mergesort acl2::x))
           (isodata-isomap-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-union

    (defthm isodata-isomap-listp-of-union
      (iff (isodata-isomap-listp (union acl2::x acl2::y))
           (and (isodata-isomap-listp (sfix acl2::x))
                (isodata-isomap-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-intersect-1

    (defthm isodata-isomap-listp-of-intersect-1
      (implies (isodata-isomap-listp acl2::x)
               (isodata-isomap-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-intersect-2

    (defthm isodata-isomap-listp-of-intersect-2
      (implies (isodata-isomap-listp acl2::y)
               (isodata-isomap-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-difference

    (defthm isodata-isomap-listp-of-difference
      (implies (isodata-isomap-listp acl2::x)
               (isodata-isomap-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-duplicated-members

    (defthm isodata-isomap-listp-of-duplicated-members
      (implies (isodata-isomap-listp acl2::x)
               (isodata-isomap-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-rev

    (defthm isodata-isomap-listp-of-rev
      (equal (isodata-isomap-listp (rev acl2::x))
             (isodata-isomap-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-append

    (defthm isodata-isomap-listp-of-append
      (equal (isodata-isomap-listp (append acl2::a acl2::b))
             (and (isodata-isomap-listp (list-fix acl2::a))
                  (isodata-isomap-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-rcons

    (defthm isodata-isomap-listp-of-rcons
      (iff (isodata-isomap-listp (rcons acl2::a acl2::x))
           (and (isodata-isomapp acl2::a)
                (isodata-isomap-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomapp-when-member-equal-of-isodata-isomap-listp

    (defthm isodata-isomapp-when-member-equal-of-isodata-isomap-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (isodata-isomap-listp acl2::x))
                    (isodata-isomapp acl2::a))
           (implies (and (isodata-isomap-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (isodata-isomapp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-when-subsetp-equal

    (defthm isodata-isomap-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (isodata-isomap-listp acl2::y))
                    (equal (isodata-isomap-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (isodata-isomap-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (isodata-isomap-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-set-difference-equal

    (defthm isodata-isomap-listp-of-set-difference-equal
     (implies
          (isodata-isomap-listp acl2::x)
          (isodata-isomap-listp (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-intersection-equal-1

    (defthm isodata-isomap-listp-of-intersection-equal-1
      (implies
           (isodata-isomap-listp (double-rewrite acl2::x))
           (isodata-isomap-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-intersection-equal-2

    (defthm isodata-isomap-listp-of-intersection-equal-2
      (implies
           (isodata-isomap-listp (double-rewrite acl2::y))
           (isodata-isomap-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-union-equal

    (defthm isodata-isomap-listp-of-union-equal
      (equal (isodata-isomap-listp (union-equal acl2::x acl2::y))
             (and (isodata-isomap-listp (list-fix acl2::x))
                  (isodata-isomap-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-take

    (defthm isodata-isomap-listp-of-take
      (implies (isodata-isomap-listp (double-rewrite acl2::x))
               (iff (isodata-isomap-listp (take acl2::n acl2::x))
                    (or (isodata-isomapp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-repeat

    (defthm isodata-isomap-listp-of-repeat
      (iff (isodata-isomap-listp (repeat acl2::n acl2::x))
           (or (isodata-isomapp acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomapp-of-nth-when-isodata-isomap-listp

    (defthm isodata-isomapp-of-nth-when-isodata-isomap-listp
      (implies (isodata-isomap-listp acl2::x)
               (iff (isodata-isomapp (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-update-nth

    (defthm isodata-isomap-listp-of-update-nth
     (implies
        (isodata-isomap-listp (double-rewrite acl2::x))
        (iff (isodata-isomap-listp (update-nth acl2::n acl2::y acl2::x))
             (and (isodata-isomapp acl2::y)
                  (or (<= (nfix acl2::n) (len acl2::x))
                      (isodata-isomapp nil)))))
     :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-butlast

    (defthm isodata-isomap-listp-of-butlast
      (implies (isodata-isomap-listp (double-rewrite acl2::x))
               (isodata-isomap-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-nthcdr

    (defthm isodata-isomap-listp-of-nthcdr
      (implies (isodata-isomap-listp (double-rewrite acl2::x))
               (isodata-isomap-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-last

    (defthm isodata-isomap-listp-of-last
      (implies (isodata-isomap-listp (double-rewrite acl2::x))
               (isodata-isomap-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-remove

    (defthm isodata-isomap-listp-of-remove
      (implies (isodata-isomap-listp acl2::x)
               (isodata-isomap-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: isodata-isomap-listp-of-revappend

    (defthm isodata-isomap-listp-of-revappend
      (equal (isodata-isomap-listp (revappend acl2::x acl2::y))
             (and (isodata-isomap-listp (list-fix acl2::x))
                  (isodata-isomap-listp acl2::y)))
      :rule-classes ((:rewrite)))