• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
      • Esim
      • Vl2014
      • Sv
        • Svex-stvs
        • Svex-decomposition-methodology
        • Sv-versus-esim
        • Svex-decomp
        • Svex-compose-dfs
        • Svex-compilation
        • Moddb
        • Svmods
        • Svstmt
        • Sv-tutorial
        • Expressions
          • Rewriting
          • Svex
          • Bit-blasting
          • Functions
          • 4vmask
          • Why-infinite-width
          • Svex-vars
          • Evaluation
          • Values
            • 4vec
            • 4vec-<<=
              • 4vec-monotonicity
              • Svex-monotonify
              • Svex-alist-partial-monotonic
              • Svex-alist-monotonic-on-vars
              • 4veclist-<<=
              • Svexlist-partial-monotonic
              • Svex-partial-monotonic
              • Svex-alist-<<=
              • Svex-alist-ovmonotonic
              • Svexlist-<<=
                • Svex-env-<<=
                • Svex-alist-ovcongruent
                • Svex-alist-monotonic-p
                • Svexlist-monotonic-on-vars
                • Svex-monotonic-on-vars
                • Svex-<<=
                • Svexlist-monotonic-p
                • 4vec-xfree-p
                • Svex-apply-monotonocity
                • Svexlist-ovmonotonic
                • Svexlist-ovcongruent
                • Svex-ovmonotonic
                • Svex-monotonic-p
              • 3vec
              • 2vec
              • 2vecx
              • 2vecnatx
              • 4vec-x
              • 4vec-1x
              • 4vec-1z
              • 4vec-z
          • Symbolic-test-vector
          • Vl-to-svex
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • 4vec-<<=

    Svexlist-<<=

    Definitions and Theorems

    Theorem: svexlist-<<=-necc

    (defthm svexlist-<<=-necc
      (implies (svexlist-<<= x y)
               (4veclist-<<= (svexlist-eval x env)
                             (svexlist-eval y env))))

    Theorem: svexlist-eval-equiv-implies-equal-svexlist-<<=-1

    (defthm svexlist-eval-equiv-implies-equal-svexlist-<<=-1
      (implies (svexlist-eval-equiv x x-equiv)
               (equal (svexlist-<<= x y)
                      (svexlist-<<= x-equiv y)))
      :rule-classes (:congruence))

    Theorem: svexlist-eval-equiv-implies-equal-svexlist-<<=-2

    (defthm svexlist-eval-equiv-implies-equal-svexlist-<<=-2
      (implies (svexlist-eval-equiv y y-equiv)
               (equal (svexlist-<<= x y)
                      (svexlist-<<= x y-equiv)))
      :rule-classes (:congruence))

    Theorem: svex-<<=-car-when-svexlist-<<=

    (defthm svex-<<=-car-when-svexlist-<<=
      (implies (svexlist-<<= x y)
               (svex-<<= (car x) (car y))))

    Theorem: svexlist-<<=-cdr-when-svexlist-<<=

    (defthm svexlist-<<=-cdr-when-svexlist-<<=
      (implies (svexlist-<<= x y)
               (svexlist-<<= (cdr x) (cdr y))))

    Theorem: svex-<<=-nth-when-svexlist-<<=

    (defthm svex-<<=-nth-when-svexlist-<<=
      (implies (svexlist-<<= x y)
               (svex-<<= (nth n x) (nth n y))))

    Theorem: svexlist-<<=-of-cons

    (defthm svexlist-<<=-of-cons
      (implies (and (svex-<<= x1 x2)
                    (svexlist-<<= y1 y2))
               (svexlist-<<= (cons x1 y1)
                             (cons x2 y2))))

    Theorem: svexlist-<<=-refl

    (defthm svexlist-<<=-refl
      (svexlist-<<= x x))

    Theorem: svexlist-<<=-transitive-1

    (defthm svexlist-<<=-transitive-1
      (implies (and (svexlist-<<= x y)
                    (svexlist-<<= y z))
               (svexlist-<<= x z)))

    Theorem: svexlist-<<=-transitive-2

    (defthm svexlist-<<=-transitive-2
      (implies (and (svexlist-<<= y z)
                    (svexlist-<<= x y))
               (svexlist-<<= x z)))

    Theorem: svexlist-<<=-asymm

    (defthm svexlist-<<=-asymm
      (implies (and (svexlist-<<= x y)
                    (equal (len x) (len y)))
               (iff (svexlist-<<= y x)
                    (svexlist-eval-equiv y x))))