(named-lit-list-map-fix x) is an ACL2::fty alist fixing function that follows the fix-keys strategy.
(named-lit-list-map-fix x) → fty::newx
Note that in the execution this is just an inline identity function.
Function:
(defun named-lit-list-map-fix$inline (x) (declare (xargs :guard (named-lit-list-map-p x))) (let ((__function__ 'named-lit-list-map-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) nil (if (consp (car x)) (cons (cons (acl2::symbol-fix (caar x)) (lit-list-fix (cdar x))) (named-lit-list-map-fix (cdr x))) (named-lit-list-map-fix (cdr x)))) :exec x)))
Theorem:
(defthm named-lit-list-map-p-of-named-lit-list-map-fix (b* ((fty::newx (named-lit-list-map-fix$inline x))) (named-lit-list-map-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm named-lit-list-map-fix-when-named-lit-list-map-p (implies (named-lit-list-map-p x) (equal (named-lit-list-map-fix x) x)))
Function:
(defun named-lit-list-map-equiv$inline (x acl2::y) (declare (xargs :guard (and (named-lit-list-map-p x) (named-lit-list-map-p acl2::y)))) (equal (named-lit-list-map-fix x) (named-lit-list-map-fix acl2::y)))
Theorem:
(defthm named-lit-list-map-equiv-is-an-equivalence (and (booleanp (named-lit-list-map-equiv x y)) (named-lit-list-map-equiv x x) (implies (named-lit-list-map-equiv x y) (named-lit-list-map-equiv y x)) (implies (and (named-lit-list-map-equiv x y) (named-lit-list-map-equiv y z)) (named-lit-list-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm named-lit-list-map-equiv-implies-equal-named-lit-list-map-fix-1 (implies (named-lit-list-map-equiv x x-equiv) (equal (named-lit-list-map-fix x) (named-lit-list-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm named-lit-list-map-fix-under-named-lit-list-map-equiv (named-lit-list-map-equiv (named-lit-list-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-named-lit-list-map-fix-1-forward-to-named-lit-list-map-equiv (implies (equal (named-lit-list-map-fix x) acl2::y) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-named-lit-list-map-fix-2-forward-to-named-lit-list-map-equiv (implies (equal x (named-lit-list-map-fix acl2::y)) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm named-lit-list-map-equiv-of-named-lit-list-map-fix-1-forward (implies (named-lit-list-map-equiv (named-lit-list-map-fix x) acl2::y) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm named-lit-list-map-equiv-of-named-lit-list-map-fix-2-forward (implies (named-lit-list-map-equiv x (named-lit-list-map-fix acl2::y)) (named-lit-list-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-symbol-fix-k-under-named-lit-list-map-equiv (named-lit-list-map-equiv (cons (cons (acl2::symbol-fix acl2::k) acl2::v) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-symbol-equiv-congruence-on-k-under-named-lit-list-map-equiv (implies (acl2::symbol-equiv acl2::k k-equiv) (named-lit-list-map-equiv (cons (cons acl2::k acl2::v) x) (cons (cons k-equiv acl2::v) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-lit-list-fix-v-under-named-lit-list-map-equiv (named-lit-list-map-equiv (cons (cons acl2::k (lit-list-fix acl2::v)) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-lit-list-equiv-congruence-on-v-under-named-lit-list-map-equiv (implies (satlink::lit-list-equiv acl2::v v-equiv) (named-lit-list-map-equiv (cons (cons acl2::k acl2::v) x) (cons (cons acl2::k v-equiv) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-named-lit-list-map-fix-y-under-named-lit-list-map-equiv (named-lit-list-map-equiv (cons x (named-lit-list-map-fix acl2::y)) (cons x acl2::y)))
Theorem:
(defthm cons-named-lit-list-map-equiv-congruence-on-y-under-named-lit-list-map-equiv (implies (named-lit-list-map-equiv acl2::y y-equiv) (named-lit-list-map-equiv (cons x acl2::y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm named-lit-list-map-fix-of-acons (equal (named-lit-list-map-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (acl2::symbol-fix acl2::a) (lit-list-fix acl2::b)) (named-lit-list-map-fix x))))
Theorem:
(defthm named-lit-list-map-fix-of-append (equal (named-lit-list-map-fix (append std::a std::b)) (append (named-lit-list-map-fix std::a) (named-lit-list-map-fix std::b))))
Theorem:
(defthm consp-car-of-named-lit-list-map-fix (equal (consp (car (named-lit-list-map-fix x))) (consp (named-lit-list-map-fix x))))