Recognizer for any-nat-map.
(any-nat-mapp x) → *
Function:
(defun any-nat-mapp (x) (declare (xargs :guard t)) (if (atom x) (null x) (and (consp (car x)) (any-p (caar x)) (natp (cdar x)) (or (null (cdr x)) (and (consp (cdr x)) (consp (cadr x)) (fast-<< (caar x) (caadr x)) (any-nat-mapp (cdr x)))))))
Theorem:
(defthm booleanp-of-any-nat-mapp (booleanp (any-nat-mapp x)))
Theorem:
(defthm mapp-when-any-nat-mapp (implies (any-nat-mapp x) (omap::mapp x)) :rule-classes (:rewrite :forward-chaining))
Theorem:
(defthm any-nat-mapp-of-tail (implies (any-nat-mapp x) (any-nat-mapp (omap::tail x))))
Theorem:
(defthm any-p-of-head-key-when-any-nat-mapp (implies (and (any-nat-mapp x) (not (omap::emptyp x))) (any-p (mv-nth 0 (omap::head x)))))
Theorem:
(defthm natp-of-head-val-when-any-nat-mapp (implies (and (any-nat-mapp x) (not (omap::emptyp x))) (natp (mv-nth 1 (omap::head x)))))
Theorem:
(defthm any-nat-mapp-of-update (implies (and (any-nat-mapp x) (any-p k) (natp v)) (any-nat-mapp (omap::update k v x))))
Theorem:
(defthm any-nat-mapp-of-update* (implies (and (any-nat-mapp x) (any-nat-mapp y)) (any-nat-mapp (omap::update* x y))))
Theorem:
(defthm any-nat-mapp-of-delete (implies (any-nat-mapp x) (any-nat-mapp (omap::delete k x))))
Theorem:
(defthm any-nat-mapp-of-delete* (implies (any-nat-mapp x) (any-nat-mapp (omap::delete* k x))))
Theorem:
(defthm any-p-when-assoc-any-nat-mapp-binds-free-x (implies (and (omap::assoc k x) (any-nat-mapp x)) (any-p k)))
Theorem:
(defthm any-p-of-car-of-assoc-any-nat-mapp (implies (and (any-nat-mapp x) (omap::assoc k x)) (any-p (car (omap::assoc k x)))))
Theorem:
(defthm natp-of-cdr-of-assoc-any-nat-mapp (implies (and (any-nat-mapp x) (omap::assoc k x)) (natp (cdr (omap::assoc k x)))))
Theorem:
(defthm natp-of-lookup-when-any-nat-mapp (implies (and (any-nat-mapp x) (omap::assoc k x)) (natp (omap::lookup k x))))