• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
        • Soft
        • Bv
        • Imp-language
        • Ethereum
        • Event-macros
        • Java
        • Riscv
        • Bitcoin
        • Zcash
        • Yul
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
          • R1cs
          • Interfaces
          • Sha-2
          • Keccak
          • Kdf
          • Mimc
          • Padding
          • Hmac
          • Elliptic-curves
            • Secp256k1-attachment
            • Twisted-edwards
            • Montgomery
            • Short-weierstrass-curves
            • Birational-montgomery-twisted-edwards
            • Has-square-root?-satisfies-pfield-squarep
            • Secp256k1
            • Secp256k1-domain-parameters
            • Secp256k1-types
            • Pfield-squarep
              • Prime-field-squares-euler-criterion
              • Pfield-odd-squarep
              • Pfield-even-squarep
              • Pfield-squarep-of-inv
              • Secp256k1-interface
              • Prime-field-extra-rules
              • Points
            • Attachments
            • Primes
            • Elliptic-curve-digital-signature-algorithm
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Pfield-squarep

    Pfield-squarep-of-inv

    The inverse of x is a prime field square iff x is.

    Definitions and Theorems

    Theorem: pfield-squarep-of-inv

    (defthm pfield-squarep-of-inv
      (implies (and (dm::primep p) (fep x p))
               (equal (pfield-squarep (inv x p) p)
                      (pfield-squarep x p))))