• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
        • Soft
        • Bv
        • Imp-language
        • Ethereum
        • Event-macros
        • Java
        • Riscv
        • Bitcoin
        • Zcash
        • Yul
        • ACL2-programming-language
        • Prime-fields
        • Json
        • Syntheto
        • File-io-light
        • Cryptography
        • Number-theory
        • Axe
        • Lists-light
        • Builtins
          • Builtin-defaxioms/defthms
            • Builtin-defthms
            • Builtin-defaxioms
            • Builtin-defaxioms/defthms-by-rule-classes
              • Builtin-defaxioms/defthms-without-rule-classes
              • Builtin-defaxioms/defthms-of-class-type-prescription
              • Builtin-defaxioms/defthms-of-class-rewrite
              • Builtin-defaxioms/defthms-of-class-forward-chaining
              • Builtin-defaxioms/defthms-of-class-definition
                • Builtin-defaxioms/defthms-of-class-congruence
                • Builtin-defaxioms/defthms-of-class-linear
                • Builtin-defaxioms/defthms-of-class-compound-recognizer
                • Builtin-defaxioms/defthms-of-class-tau-system
                • Builtin-defaxioms/defthms-of-class-equivalence
                • Builtin-defaxioms/defthms-of-class-elim
                • Builtin-defaxioms/defthms-of-class-well-founded-relation
                • Builtin-defaxioms/defthms-of-class-type-set-inverter
                • Builtin-defaxioms/defthms-of-class-rewrite-quoted-constant
                • Builtin-defaxioms/defthms-of-class-refinement
                • Builtin-defaxioms/defthms-of-class-generalize
                • Builtin-defaxioms/defthms-of-class-clause-processor
                • Builtin-defaxioms/defthms-of-class-built-in-clause
                • Builtin-defaxioms/defthms-of-class-meta
                • Builtin-defaxioms/defthms-of-class-induction
              • Builtin-defaxioms/defthms-by-types/functions
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Builtin-defaxioms/defthms-by-rule-classes

    Builtin-defaxioms/defthms-of-class-definition

    Built-in axioms and theorems of the :definition rule class.

    Theorem: apply$-warrant-do$-definition

    (defthm apply$-warrant-do$-definition
     (equal
      (apply$-warrant-do$)
      (let ((args (apply$-warrant-do$-witness)))
       (implies
         (and (tamep-functionp (car args))
              (tamep-functionp (car (cdr (cdr args))))
              (tamep-functionp (car (cdr (cdr (cdr args))))))
         (and (equal (badge-userfn 'do$)
                     '(apply$-badge 6 1 :fn nil :fn :fn nil nil))
              (equal (apply$-userfn 'do$ args)
                     (do$ (car args)
                          (car (cdr args))
                          (car (cdr (cdr args)))
                          (car (cdr (cdr (cdr args))))
                          (car (cdr (cdr (cdr (cdr args)))))
                          (car (cdr (cdr (cdr (cdr (cdr args))))))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-loop$-default-values-definition

    (defthm apply$-warrant-loop$-default-values-definition
      (equal (apply$-warrant-loop$-default-values)
             (let ((args (apply$-warrant-loop$-default-values-witness)))
               (and (equal (badge-userfn 'loop$-default-values)
                           '(apply$-badge 2 1 . t))
                    (equal (apply$-userfn 'loop$-default-values
                                          args)
                           (loop$-default-values (car args)
                                                 (car (cdr args)))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-loop$-default-values1-definition

    (defthm apply$-warrant-loop$-default-values1-definition
     (equal (apply$-warrant-loop$-default-values1)
            (let ((args (apply$-warrant-loop$-default-values1-witness)))
              (and (equal (badge-userfn 'loop$-default-values1)
                          '(apply$-badge 2 1 . t))
                   (equal (apply$-userfn 'loop$-default-values1
                                         args)
                          (loop$-default-values1 (car args)
                                                 (car (cdr args)))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-eviscerate-do$-alist-definition

    (defthm apply$-warrant-eviscerate-do$-alist-definition
      (equal (apply$-warrant-eviscerate-do$-alist)
             (let ((args (apply$-warrant-eviscerate-do$-alist-witness)))
               (and (equal (badge-userfn 'eviscerate-do$-alist)
                           '(apply$-badge 2 1 . t))
                    (equal (apply$-userfn 'eviscerate-do$-alist
                                          args)
                           (eviscerate-do$-alist (car args)
                                                 (car (cdr args)))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-stobj-print-name-definition

    (defthm apply$-warrant-stobj-print-name-definition
      (equal (apply$-warrant-stobj-print-name)
             (let ((args (apply$-warrant-stobj-print-name-witness)))
               (and (equal (badge-userfn 'stobj-print-name)
                           '(apply$-badge 1 1 . t))
                    (equal (apply$-userfn 'stobj-print-name args)
                           (stobj-print-name (car args))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-lexp-definition

    (defthm apply$-warrant-lexp-definition
      (equal (apply$-warrant-lexp)
             (let ((args (apply$-warrant-lexp-witness)))
               (and (equal (badge-userfn 'lexp)
                           '(apply$-badge 1 1 . t))
                    (equal (apply$-userfn 'lexp args)
                           (lexp (car args))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-lex-fix-definition

    (defthm apply$-warrant-lex-fix-definition
      (equal (apply$-warrant-lex-fix)
             (let ((args (apply$-warrant-lex-fix-witness)))
               (and (equal (badge-userfn 'lex-fix)
                           '(apply$-badge 1 1 . t))
                    (equal (apply$-userfn 'lex-fix args)
                           (lex-fix (car args))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-nfix-list-definition

    (defthm apply$-warrant-nfix-list-definition
      (equal (apply$-warrant-nfix-list)
             (let ((args (apply$-warrant-nfix-list-witness)))
               (and (equal (badge-userfn 'nfix-list)
                           '(apply$-badge 1 1 . t))
                    (equal (apply$-userfn 'nfix-list args)
                           (nfix-list (car args))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-l<-definition

    (defthm apply$-warrant-l<-definition
      (equal (apply$-warrant-l<)
             (let ((args (apply$-warrant-l<-witness)))
               (and (equal (badge-userfn 'l<)
                           '(apply$-badge 2 1 . t))
                    (equal (apply$-userfn 'l< args)
                           (l< (car args) (car (cdr args)))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-d<-definition

    (defthm apply$-warrant-d<-definition
      (equal (apply$-warrant-d<)
             (let ((args (apply$-warrant-d<-witness)))
               (and (equal (badge-userfn 'd<)
                           '(apply$-badge 2 1 . t))
                    (equal (apply$-userfn 'd< args)
                           (d< (car args) (car (cdr args)))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-mempos-definition

    (defthm apply$-warrant-mempos-definition
      (equal (apply$-warrant-mempos)
             (let ((args (apply$-warrant-mempos-witness)))
               (and (equal (badge-userfn 'mempos)
                           '(apply$-badge 2 1 . t))
                    (equal (apply$-userfn 'mempos args)
                           (mempos (car args) (car (cdr args)))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-append$+-definition

    (defthm apply$-warrant-append$+-definition
      (equal
           (apply$-warrant-append$+)
           (let ((args (apply$-warrant-append$+-witness)))
             (implies (tamep-functionp (car args))
                      (and (equal (badge-userfn 'append$+)
                                  '(apply$-badge 3 1 :fn nil nil))
                           (equal (apply$-userfn 'append$+ args)
                                  (append$+ (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-append$+-ac-definition

    (defthm apply$-warrant-append$+-ac-definition
     (equal
      (apply$-warrant-append$+-ac)
      (let ((args (apply$-warrant-append$+-ac-witness)))
        (implies
             (tamep-functionp (car args))
             (and (equal (badge-userfn 'append$+-ac)
                         '(apply$-badge 4 1 :fn nil nil nil))
                  (equal (apply$-userfn 'append$+-ac args)
                         (append$+-ac (car args)
                                      (car (cdr args))
                                      (car (cdr (cdr args)))
                                      (car (cdr (cdr (cdr args))))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-append$-definition

    (defthm apply$-warrant-append$-definition
      (equal (apply$-warrant-append$)
             (let ((args (apply$-warrant-append$-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'append$)
                                    '(apply$-badge 2 1 :fn nil))
                             (equal (apply$-userfn 'append$ args)
                                    (append$ (car args)
                                             (car (cdr args))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-append$-ac-definition

    (defthm apply$-warrant-append$-ac-definition
     (equal
         (apply$-warrant-append$-ac)
         (let ((args (apply$-warrant-append$-ac-witness)))
           (implies (tamep-functionp (car args))
                    (and (equal (badge-userfn 'append$-ac)
                                '(apply$-badge 3 1 :fn nil nil))
                         (equal (apply$-userfn 'append$-ac args)
                                (append$-ac (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-collect$+-definition

    (defthm apply$-warrant-collect$+-definition
     (equal
          (apply$-warrant-collect$+)
          (let ((args (apply$-warrant-collect$+-witness)))
            (implies (tamep-functionp (car args))
                     (and (equal (badge-userfn 'collect$+)
                                 '(apply$-badge 3 1 :fn nil nil))
                          (equal (apply$-userfn 'collect$+ args)
                                 (collect$+ (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-collect$+-ac-definition

    (defthm apply$-warrant-collect$+-ac-definition
     (equal
      (apply$-warrant-collect$+-ac)
      (let ((args (apply$-warrant-collect$+-ac-witness)))
       (implies
            (tamep-functionp (car args))
            (and (equal (badge-userfn 'collect$+-ac)
                        '(apply$-badge 4 1 :fn nil nil nil))
                 (equal (apply$-userfn 'collect$+-ac args)
                        (collect$+-ac (car args)
                                      (car (cdr args))
                                      (car (cdr (cdr args)))
                                      (car (cdr (cdr (cdr args))))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-collect$-definition

    (defthm apply$-warrant-collect$-definition
      (equal (apply$-warrant-collect$)
             (let ((args (apply$-warrant-collect$-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'collect$)
                                    '(apply$-badge 2 1 :fn nil))
                             (equal (apply$-userfn 'collect$ args)
                                    (collect$ (car args)
                                              (car (cdr args))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-collect$-ac-definition

    (defthm apply$-warrant-collect$-ac-definition
     (equal
        (apply$-warrant-collect$-ac)
        (let ((args (apply$-warrant-collect$-ac-witness)))
          (implies (tamep-functionp (car args))
                   (and (equal (badge-userfn 'collect$-ac)
                               '(apply$-badge 3 1 :fn nil nil))
                        (equal (apply$-userfn 'collect$-ac args)
                               (collect$-ac (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-thereis$+-definition

    (defthm apply$-warrant-thereis$+-definition
     (equal
          (apply$-warrant-thereis$+)
          (let ((args (apply$-warrant-thereis$+-witness)))
            (implies (tamep-functionp (car args))
                     (and (equal (badge-userfn 'thereis$+)
                                 '(apply$-badge 3 1 :fn nil nil))
                          (equal (apply$-userfn 'thereis$+ args)
                                 (thereis$+ (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-thereis$-definition

    (defthm apply$-warrant-thereis$-definition
      (equal (apply$-warrant-thereis$)
             (let ((args (apply$-warrant-thereis$-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'thereis$)
                                    '(apply$-badge 2 1 :fn nil))
                             (equal (apply$-userfn 'thereis$ args)
                                    (thereis$ (car args)
                                              (car (cdr args))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-always$+-definition

    (defthm apply$-warrant-always$+-definition
      (equal
           (apply$-warrant-always$+)
           (let ((args (apply$-warrant-always$+-witness)))
             (implies (tamep-functionp (car args))
                      (and (equal (badge-userfn 'always$+)
                                  '(apply$-badge 3 1 :fn nil nil))
                           (equal (apply$-userfn 'always$+ args)
                                  (always$+ (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-always$-definition

    (defthm apply$-warrant-always$-definition
      (equal (apply$-warrant-always$)
             (let ((args (apply$-warrant-always$-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'always$)
                                    '(apply$-badge 2 1 :fn nil))
                             (equal (apply$-userfn 'always$ args)
                                    (always$ (car args)
                                             (car (cdr args))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-sum$+-definition

    (defthm apply$-warrant-sum$+-definition
      (equal (apply$-warrant-sum$+)
             (let ((args (apply$-warrant-sum$+-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'sum$+)
                                    '(apply$-badge 3 1 :fn nil nil))
                             (equal (apply$-userfn 'sum$+ args)
                                    (sum$+ (car args)
                                           (car (cdr args))
                                           (car (cdr (cdr args)))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-sum$+-ac-definition

    (defthm apply$-warrant-sum$+-ac-definition
     (equal
      (apply$-warrant-sum$+-ac)
      (let ((args (apply$-warrant-sum$+-ac-witness)))
       (implies (tamep-functionp (car args))
                (and (equal (badge-userfn 'sum$+-ac)
                            '(apply$-badge 4 1 :fn nil nil nil))
                     (equal (apply$-userfn 'sum$+-ac args)
                            (sum$+-ac (car args)
                                      (car (cdr args))
                                      (car (cdr (cdr args)))
                                      (car (cdr (cdr (cdr args))))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-sum$-definition

    (defthm apply$-warrant-sum$-definition
     (equal
          (apply$-warrant-sum$)
          (let ((args (apply$-warrant-sum$-witness)))
            (implies (tamep-functionp (car args))
                     (and (equal (badge-userfn 'sum$)
                                 '(apply$-badge 2 1 :fn nil))
                          (equal (apply$-userfn 'sum$ args)
                                 (sum$ (car args) (car (cdr args))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-sum$-ac-definition

    (defthm apply$-warrant-sum$-ac-definition
     (equal (apply$-warrant-sum$-ac)
            (let ((args (apply$-warrant-sum$-ac-witness)))
              (implies (tamep-functionp (car args))
                       (and (equal (badge-userfn 'sum$-ac)
                                   '(apply$-badge 3 1 :fn nil nil))
                            (equal (apply$-userfn 'sum$-ac args)
                                   (sum$-ac (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-when$+-definition

    (defthm apply$-warrant-when$+-definition
      (equal (apply$-warrant-when$+)
             (let ((args (apply$-warrant-when$+-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'when$+)
                                    '(apply$-badge 3 1 :fn nil nil))
                             (equal (apply$-userfn 'when$+ args)
                                    (when$+ (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-when$+-ac-definition

    (defthm apply$-warrant-when$+-ac-definition
     (equal
        (apply$-warrant-when$+-ac)
        (let ((args (apply$-warrant-when$+-ac-witness)))
          (implies
               (tamep-functionp (car args))
               (and (equal (badge-userfn 'when$+-ac)
                           '(apply$-badge 4 1 :fn nil nil nil))
                    (equal (apply$-userfn 'when$+-ac args)
                           (when$+-ac (car args)
                                      (car (cdr args))
                                      (car (cdr (cdr args)))
                                      (car (cdr (cdr (cdr args))))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-when$-definition

    (defthm apply$-warrant-when$-definition
     (equal
         (apply$-warrant-when$)
         (let ((args (apply$-warrant-when$-witness)))
           (implies (tamep-functionp (car args))
                    (and (equal (badge-userfn 'when$)
                                '(apply$-badge 2 1 :fn nil))
                         (equal (apply$-userfn 'when$ args)
                                (when$ (car args) (car (cdr args))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-when$-ac-definition

    (defthm apply$-warrant-when$-ac-definition
      (equal
           (apply$-warrant-when$-ac)
           (let ((args (apply$-warrant-when$-ac-witness)))
             (implies (tamep-functionp (car args))
                      (and (equal (badge-userfn 'when$-ac)
                                  '(apply$-badge 3 1 :fn nil nil))
                           (equal (apply$-userfn 'when$-ac args)
                                  (when$-ac (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-until$+-definition

    (defthm apply$-warrant-until$+-definition
     (equal (apply$-warrant-until$+)
            (let ((args (apply$-warrant-until$+-witness)))
              (implies (tamep-functionp (car args))
                       (and (equal (badge-userfn 'until$+)
                                   '(apply$-badge 3 1 :fn nil nil))
                            (equal (apply$-userfn 'until$+ args)
                                   (until$+ (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-until$+-ac-definition

    (defthm apply$-warrant-until$+-ac-definition
     (equal
       (apply$-warrant-until$+-ac)
       (let ((args (apply$-warrant-until$+-ac-witness)))
         (implies
              (tamep-functionp (car args))
              (and (equal (badge-userfn 'until$+-ac)
                          '(apply$-badge 4 1 :fn nil nil nil))
                   (equal (apply$-userfn 'until$+-ac args)
                          (until$+-ac (car args)
                                      (car (cdr args))
                                      (car (cdr (cdr args)))
                                      (car (cdr (cdr (cdr args))))))))))
     :rule-classes :definition)

    Theorem: apply$-warrant-until$-definition

    (defthm apply$-warrant-until$-definition
      (equal (apply$-warrant-until$)
             (let ((args (apply$-warrant-until$-witness)))
               (implies (tamep-functionp (car args))
                        (and (equal (badge-userfn 'until$)
                                    '(apply$-badge 2 1 :fn nil))
                             (equal (apply$-userfn 'until$ args)
                                    (until$ (car args)
                                            (car (cdr args))))))))
      :rule-classes :definition)

    Theorem: apply$-warrant-until$-ac-definition

    (defthm apply$-warrant-until$-ac-definition
     (equal
          (apply$-warrant-until$-ac)
          (let ((args (apply$-warrant-until$-ac-witness)))
            (implies (tamep-functionp (car args))
                     (and (equal (badge-userfn 'until$-ac)
                                 '(apply$-badge 3 1 :fn nil nil))
                          (equal (apply$-userfn 'until$-ac args)
                                 (until$-ac (car args)
                                            (car (cdr args))
                                            (car (cdr (cdr args)))))))))
     :rule-classes :definition)