• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
          • Syntax-for-tools
            • Formalized-subset
            • Mapping-to-language-definition
            • Input-files
            • Compilation-database
            • Printer
            • Output-files
            • Abstract-syntax-operations
            • Implementation-environments
            • Abstract-syntax
            • Concrete-syntax
            • Disambiguation
            • Validation
              • Validator
              • Validation-information
                • Abstract-syntax-annop
                • Types
                • Abstract-syntax-anno-additional-theroems
                • Valid-ext-info
                • Valid-table
                • Valid-ord-info
                • Uid
                • Stmts-types
                • Lifetime
                • Initdeclor-info
                • Fundef-types
                • Expr-type
                • Valid-defstatus
                • Var-info
                • Valid-ord-info-option
                • Valid-ext-info-option
                • Uid-option
                • Linkage-option
                • Linkage
                • Lifetime-option
                • Valid-table-option
                • Iconst-info
                • Param-declor-nonabstract-info
                • Fundef-info
                • Expr-null-pointer-constp
                • Valid-scope
                • Const-expr-null-pointer-constp
                • Expr-string-info
                • Expr-funcall-info
                • Expr-arrsub-info
                • Tyname-info
                • Transunit-info
                • Expr-unary-info
                • Expr-const-info
                • Expr-binary-info
                • Stmt-types
                • Block-item-list-types
                • Initer-type
                • Valid-ord-scope
                  • Valid-ord-scopep
                    • Valid-ord-scope-fix
                    • Valid-ord-scope-equiv
                  • Uid-increment
                  • Uid-equal
                  • Coerce-var-info
                  • Valid-externals
                  • Irr-var-info
                  • Valid-scope-list
                  • Irr-valid-table
                  • Irr-lifetime
                  • Irr-uid
                  • Irr-linkage
                  • Block-item-types
                  • Comp-stmt-types
              • Gcc-builtins
              • Preprocessing
              • Parsing
            • Atc
            • Transformation-tools
            • Language
            • Representation
            • Insertion-sort
            • Pack
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Valid-ord-scope

    Valid-ord-scopep

    Recognizer for valid-ord-scope.

    Signature
    (valid-ord-scopep x) → *

    Definitions and Theorems

    Function: valid-ord-scopep

    (defun valid-ord-scopep (x)
      (declare (xargs :guard t))
      (if (atom x)
          (eq x nil)
        (and (consp (car x))
             (identp (caar x))
             (valid-ord-infop (cdar x))
             (valid-ord-scopep (cdr x)))))

    Theorem: valid-ord-scopep-of-revappend

    (defthm valid-ord-scopep-of-revappend
      (equal (valid-ord-scopep (revappend acl2::x acl2::y))
             (and (valid-ord-scopep (list-fix acl2::x))
                  (valid-ord-scopep acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-remove

    (defthm valid-ord-scopep-of-remove
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-last

    (defthm valid-ord-scopep-of-last
      (implies (valid-ord-scopep (double-rewrite acl2::x))
               (valid-ord-scopep (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-nthcdr

    (defthm valid-ord-scopep-of-nthcdr
      (implies (valid-ord-scopep (double-rewrite acl2::x))
               (valid-ord-scopep (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-butlast

    (defthm valid-ord-scopep-of-butlast
      (implies (valid-ord-scopep (double-rewrite acl2::x))
               (valid-ord-scopep (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-update-nth

    (defthm valid-ord-scopep-of-update-nth
      (implies
           (valid-ord-scopep (double-rewrite acl2::x))
           (iff (valid-ord-scopep (update-nth acl2::n acl2::y acl2::x))
                (and (and (consp acl2::y)
                          (identp (car acl2::y))
                          (valid-ord-infop (cdr acl2::y)))
                     (or (<= (nfix acl2::n) (len acl2::x))
                         (and (consp nil)
                              (identp (car nil))
                              (valid-ord-infop (cdr nil)))))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-repeat

    (defthm valid-ord-scopep-of-repeat
      (iff (valid-ord-scopep (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (identp (car acl2::x))
                    (valid-ord-infop (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-take

    (defthm valid-ord-scopep-of-take
      (implies (valid-ord-scopep (double-rewrite acl2::x))
               (iff (valid-ord-scopep (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (identp (car nil))
                             (valid-ord-infop (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-union-equal

    (defthm valid-ord-scopep-of-union-equal
      (equal (valid-ord-scopep (union-equal acl2::x acl2::y))
             (and (valid-ord-scopep (list-fix acl2::x))
                  (valid-ord-scopep (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-intersection-equal-2

    (defthm valid-ord-scopep-of-intersection-equal-2
      (implies (valid-ord-scopep (double-rewrite acl2::y))
               (valid-ord-scopep (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-intersection-equal-1

    (defthm valid-ord-scopep-of-intersection-equal-1
      (implies (valid-ord-scopep (double-rewrite acl2::x))
               (valid-ord-scopep (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-set-difference-equal

    (defthm valid-ord-scopep-of-set-difference-equal
     (implies (valid-ord-scopep acl2::x)
              (valid-ord-scopep (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-when-subsetp-equal

    (defthm valid-ord-scopep-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (valid-ord-scopep acl2::y))
                    (equal (valid-ord-scopep acl2::x)
                           (true-listp acl2::x)))
           (implies (and (valid-ord-scopep acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (valid-ord-scopep acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-rcons

    (defthm valid-ord-scopep-of-rcons
      (iff (valid-ord-scopep (rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (identp (car acl2::a))
                     (valid-ord-infop (cdr acl2::a)))
                (valid-ord-scopep (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-append

    (defthm valid-ord-scopep-of-append
      (equal (valid-ord-scopep (append acl2::a acl2::b))
             (and (valid-ord-scopep (list-fix acl2::a))
                  (valid-ord-scopep acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-rev

    (defthm valid-ord-scopep-of-rev
      (equal (valid-ord-scopep (rev acl2::x))
             (valid-ord-scopep (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-duplicated-members

    (defthm valid-ord-scopep-of-duplicated-members
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-difference

    (defthm valid-ord-scopep-of-difference
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-intersect-2

    (defthm valid-ord-scopep-of-intersect-2
      (implies (valid-ord-scopep acl2::y)
               (valid-ord-scopep (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-intersect-1

    (defthm valid-ord-scopep-of-intersect-1
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-union

    (defthm valid-ord-scopep-of-union
      (iff (valid-ord-scopep (union acl2::x acl2::y))
           (and (valid-ord-scopep (sfix acl2::x))
                (valid-ord-scopep (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-mergesort

    (defthm valid-ord-scopep-of-mergesort
      (iff (valid-ord-scopep (mergesort acl2::x))
           (valid-ord-scopep (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-delete

    (defthm valid-ord-scopep-of-delete
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-insert

    (defthm valid-ord-scopep-of-insert
      (iff (valid-ord-scopep (insert acl2::a acl2::x))
           (and (valid-ord-scopep (sfix acl2::x))
                (and (consp acl2::a)
                     (identp (car acl2::a))
                     (valid-ord-infop (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-sfix

    (defthm valid-ord-scopep-of-sfix
      (iff (valid-ord-scopep (sfix acl2::x))
           (or (valid-ord-scopep acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-list-fix

    (defthm valid-ord-scopep-of-list-fix
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-valid-ord-scopep-compound-recognizer

    (defthm true-listp-when-valid-ord-scopep-compound-recognizer
      (implies (valid-ord-scopep acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: valid-ord-scopep-when-not-consp

    (defthm valid-ord-scopep-when-not-consp
      (implies (not (consp acl2::x))
               (equal (valid-ord-scopep acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-cdr-when-valid-ord-scopep

    (defthm valid-ord-scopep-of-cdr-when-valid-ord-scopep
      (implies (valid-ord-scopep (double-rewrite acl2::x))
               (valid-ord-scopep (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-cons

    (defthm valid-ord-scopep-of-cons
      (equal (valid-ord-scopep (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (identp (car acl2::a))
                       (valid-ord-infop (cdr acl2::a)))
                  (valid-ord-scopep acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-remove-assoc

    (defthm valid-ord-scopep-of-remove-assoc
      (implies
           (valid-ord-scopep acl2::x)
           (valid-ord-scopep (remove-assoc-equal acl2::name acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-put-assoc

    (defthm valid-ord-scopep-of-put-assoc
     (implies
      (and (valid-ord-scopep acl2::x))
      (iff
       (valid-ord-scopep (put-assoc-equal acl2::name acl2::val acl2::x))
       (and (identp acl2::name)
            (valid-ord-infop acl2::val))))
     :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-fast-alist-clean

    (defthm valid-ord-scopep-of-fast-alist-clean
      (implies (valid-ord-scopep acl2::x)
               (valid-ord-scopep (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-hons-shrink-alist

    (defthm valid-ord-scopep-of-hons-shrink-alist
      (implies (and (valid-ord-scopep acl2::x)
                    (valid-ord-scopep acl2::y))
               (valid-ord-scopep (hons-shrink-alist acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-scopep-of-hons-acons

    (defthm valid-ord-scopep-of-hons-acons
      (equal (valid-ord-scopep (hons-acons acl2::a acl2::n acl2::x))
             (and (identp acl2::a)
                  (valid-ord-infop acl2::n)
                  (valid-ord-scopep acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: valid-ord-infop-of-cdr-of-hons-assoc-equal-when-valid-ord-scopep

    (defthm
       valid-ord-infop-of-cdr-of-hons-assoc-equal-when-valid-ord-scopep
     (implies
         (valid-ord-scopep acl2::x)
         (iff (valid-ord-infop (cdr (hons-assoc-equal acl2::k acl2::x)))
              (hons-assoc-equal acl2::k acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: alistp-when-valid-ord-scopep-rewrite

    (defthm alistp-when-valid-ord-scopep-rewrite
      (implies (valid-ord-scopep acl2::x)
               (alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-valid-ord-scopep

    (defthm alistp-when-valid-ord-scopep
      (implies (valid-ord-scopep acl2::x)
               (alistp acl2::x))
      :rule-classes :tau-system)

    Theorem: valid-ord-infop-of-cdar-when-valid-ord-scopep

    (defthm valid-ord-infop-of-cdar-when-valid-ord-scopep
      (implies (valid-ord-scopep acl2::x)
               (iff (valid-ord-infop (cdar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: identp-of-caar-when-valid-ord-scopep

    (defthm identp-of-caar-when-valid-ord-scopep
      (implies (valid-ord-scopep acl2::x)
               (iff (identp (caar acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))