(valid-externals-fix x) is a usual ACL2::fty omap fixing function.
(valid-externals-fix x) → *
Function:
(defun valid-externals-fix (x) (declare (xargs :guard (valid-externalsp x))) (mbe :logic (if (valid-externalsp x) x nil) :exec x))
Theorem:
(defthm valid-externalsp-of-valid-externals-fix (valid-externalsp (valid-externals-fix x)))
Theorem:
(defthm valid-externals-fix-when-valid-externalsp (implies (valid-externalsp x) (equal (valid-externals-fix x) x)))
Theorem:
(defthm emptyp-valid-externals-fix (implies (or (omap::emptyp x) (not (valid-externalsp x))) (omap::emptyp (valid-externals-fix x))))
Theorem:
(defthm emptyp-of-valid-externals-fix-to-not-valid-externals-or-emptyp (equal (omap::emptyp (valid-externals-fix x)) (or (not (valid-externalsp x)) (omap::emptyp x))))
Function:
(defun valid-externals-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (valid-externalsp acl2::x) (valid-externalsp acl2::y)))) (equal (valid-externals-fix acl2::x) (valid-externals-fix acl2::y)))
Theorem:
(defthm valid-externals-equiv-is-an-equivalence (and (booleanp (valid-externals-equiv x y)) (valid-externals-equiv x x) (implies (valid-externals-equiv x y) (valid-externals-equiv y x)) (implies (and (valid-externals-equiv x y) (valid-externals-equiv y z)) (valid-externals-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm valid-externals-equiv-implies-equal-valid-externals-fix-1 (implies (valid-externals-equiv acl2::x x-equiv) (equal (valid-externals-fix acl2::x) (valid-externals-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm valid-externals-fix-under-valid-externals-equiv (valid-externals-equiv (valid-externals-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-valid-externals-fix-1-forward-to-valid-externals-equiv (implies (equal (valid-externals-fix acl2::x) acl2::y) (valid-externals-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-valid-externals-fix-2-forward-to-valid-externals-equiv (implies (equal acl2::x (valid-externals-fix acl2::y)) (valid-externals-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-externals-equiv-of-valid-externals-fix-1-forward (implies (valid-externals-equiv (valid-externals-fix acl2::x) acl2::y) (valid-externals-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-externals-equiv-of-valid-externals-fix-2-forward (implies (valid-externals-equiv acl2::x (valid-externals-fix acl2::y)) (valid-externals-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm valid-externals-fix-of-valid-externals-fix-x (equal (valid-externals-fix (valid-externals-fix x)) (valid-externals-fix x)))
Theorem:
(defthm valid-externals-fix-valid-externals-equiv-congruence-on-x (implies (valid-externals-equiv x x-equiv) (equal (valid-externals-fix x) (valid-externals-fix x-equiv))) :rule-classes :congruence)