(attrib-name-aidentp attrib-name gcc) → fty::result
Function:
(defun attrib-name-aidentp (attrib-name gcc) (declare (xargs :guard (and (attrib-namep attrib-name) (booleanp gcc)))) (declare (ignorable attrib-name)) (let ((__function__ 'attrib-name-aidentp)) (declare (ignorable __function__)) (attrib-name-case attrib-name :ident (ident-aidentp (attrib-name-ident->unwrap attrib-name) gcc) :keyword t)))
Theorem:
(defthm booleanp-of-attrib-name-aidentp (b* ((fty::result (attrib-name-aidentp attrib-name gcc))) (booleanp fty::result)) :rule-classes :rewrite)
Theorem:
(defthm attrib-name-aidentp-of-attrib-name-fix-attrib-name (equal (attrib-name-aidentp (attrib-name-fix attrib-name) gcc) (attrib-name-aidentp attrib-name gcc)))
Theorem:
(defthm attrib-name-aidentp-attrib-name-equiv-congruence-on-attrib-name (implies (attrib-name-equiv attrib-name attrib-name-equiv) (equal (attrib-name-aidentp attrib-name gcc) (attrib-name-aidentp attrib-name-equiv gcc))) :rule-classes :congruence)
Theorem:
(defthm attrib-name-aidentp-of-bool-fix-gcc (equal (attrib-name-aidentp attrib-name (bool-fix gcc)) (attrib-name-aidentp attrib-name gcc)))
Theorem:
(defthm attrib-name-aidentp-iff-congruence-on-gcc (implies (iff gcc gcc-equiv) (equal (attrib-name-aidentp attrib-name gcc) (attrib-name-aidentp attrib-name gcc-equiv))) :rule-classes :congruence)