Print a list of zero or more characters usable in header names in double quotes.
(print-q-char-list qchars pstate) → new-pstate
Function:
(defun print-q-char-list (qchars pstate) (declare (xargs :guard (and (q-char-listp qchars) (pristatep pstate)))) (let ((__function__ 'print-q-char-list)) (declare (ignorable __function__)) (b* (((when (endp qchars)) (pristate-fix pstate)) (pstate (print-q-char (car qchars) pstate))) (print-q-char-list (cdr qchars) pstate))))
Theorem:
(defthm pristatep-of-print-q-char-list (b* ((new-pstate (print-q-char-list qchars pstate))) (pristatep new-pstate)) :rule-classes :rewrite)
Theorem:
(defthm pristate->gcc-of-print-q-char-list (b* ((?new-pstate (print-q-char-list qchars pstate))) (equal (pristate->gcc new-pstate) (pristate->gcc pstate))))
Theorem:
(defthm print-q-char-list-of-q-char-list-fix-qchars (equal (print-q-char-list (q-char-list-fix qchars) pstate) (print-q-char-list qchars pstate)))
Theorem:
(defthm print-q-char-list-q-char-list-equiv-congruence-on-qchars (implies (q-char-list-equiv qchars qchars-equiv) (equal (print-q-char-list qchars pstate) (print-q-char-list qchars-equiv pstate))) :rule-classes :congruence)
Theorem:
(defthm print-q-char-list-of-pristate-fix-pstate (equal (print-q-char-list qchars (pristate-fix pstate)) (print-q-char-list qchars pstate)))
Theorem:
(defthm print-q-char-list-pristate-equiv-congruence-on-pstate (implies (pristate-equiv pstate pstate-equiv) (equal (print-q-char-list qchars pstate) (print-q-char-list qchars pstate-equiv))) :rule-classes :congruence)