• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
          • Syntax-for-tools
          • Atc
          • Transformation-tools
          • Language
            • Abstract-syntax
            • Integer-ranges
              • Def-integer-range
              • Integer-type-rangep
              • Ushort-integer
              • Ullong-integer
              • Sshort-integer
              • Sllong-integer
              • Ulong-integer
              • Uint-integer
              • Uchar-integer
              • Slong-integer
              • Sint-integer
              • Schar-integer
              • Ushort-max
              • Slong-max
              • Sllong-max
              • Integer-type-min
              • Integer-type-max
              • Uint-max
              • Sint-max
              • Ulong-max
              • Uchar-max
              • Def-integer-range-loop
              • Sshort-min
              • Sshort-max
              • Slong-min
              • Sint-min
              • Ullong-max
              • Sllong-min
              • Schar-min
              • Schar-max
              • Ushort-integer-list
              • Ulong-integer-list
              • Ullong-integer-list
              • Uint-integer-list
              • Uchar-integer-list
              • Sshort-integer-list
              • Slong-integer-list
              • Sllong-integer-list
              • Sint-integer-list
              • Schar-integer-list
                • Schar-integer-list-fix
                  • Schar-integer-list-equiv
                  • Schar-integer-listp
                • Uchar-integerp-alt-def
                • Ushort-integerp-alt-def
                • Ulong-integerp-alt-def
                • Ullong-integerp-alt-def
                • Uint-integerp-alt-def
                • Sshort-integerp-alt-def
                • Slong-integerp-alt-def
                • Sllong-integerp-alt-def
                • Sint-integerp-alt-def
                • Schar-integerp-alt-def
              • Implementation-environments
              • Dynamic-semantics
              • Static-semantics
              • Grammar
              • Types
              • Integer-formats-definitions
              • Computation-states
              • Portable-ascii-identifiers
              • Values
              • Integer-operations
              • Object-designators
              • Operations
              • Errors
              • Tag-environments
              • Function-environments
              • Character-sets
              • Flexible-array-member-removal
              • Arithmetic-operations
              • Pointer-operations
              • Real-operations
              • Array-operations
              • Scalar-operations
              • Structure-operations
            • Representation
            • Insertion-sort
            • Pack
          • Soft
          • Bv
          • Imp-language
          • Ethereum
          • Event-macros
          • Java
          • Riscv
          • Bitcoin
          • Zcash
          • Yul
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Schar-integer-list

    Schar-integer-list-fix

    (schar-integer-list-fix x) is a usual ACL2::fty list fixing function.

    Signature
    (schar-integer-list-fix x) → fty::newx
    Arguments
    x — Guard (schar-integer-listp x).
    Returns
    fty::newx — Type (schar-integer-listp fty::newx).

    In the logic, we apply schar-integer-fix to each member of the x. In the execution, none of that is actually necessary and this is just an inlined identity function.

    Definitions and Theorems

    Function: schar-integer-list-fix$inline

    (defun schar-integer-list-fix$inline (x)
      (declare (xargs :guard (schar-integer-listp x)))
      (mbe :logic
           (if (atom x)
               nil
             (cons (schar-integer-fix (car x))
                   (schar-integer-list-fix (cdr x))))
           :exec x))

    Theorem: schar-integer-listp-of-schar-integer-list-fix

    (defthm schar-integer-listp-of-schar-integer-list-fix
      (b* ((fty::newx (schar-integer-list-fix$inline x)))
        (schar-integer-listp fty::newx))
      :rule-classes :rewrite)

    Theorem: schar-integer-list-fix-when-schar-integer-listp

    (defthm schar-integer-list-fix-when-schar-integer-listp
      (implies (schar-integer-listp x)
               (equal (schar-integer-list-fix x) x)))

    Function: schar-integer-list-equiv$inline

    (defun schar-integer-list-equiv$inline (acl2::x acl2::y)
      (declare (xargs :guard (and (schar-integer-listp acl2::x)
                                  (schar-integer-listp acl2::y))))
      (equal (schar-integer-list-fix acl2::x)
             (schar-integer-list-fix acl2::y)))

    Theorem: schar-integer-list-equiv-is-an-equivalence

    (defthm schar-integer-list-equiv-is-an-equivalence
      (and (booleanp (schar-integer-list-equiv x y))
           (schar-integer-list-equiv x x)
           (implies (schar-integer-list-equiv x y)
                    (schar-integer-list-equiv y x))
           (implies (and (schar-integer-list-equiv x y)
                         (schar-integer-list-equiv y z))
                    (schar-integer-list-equiv x z)))
      :rule-classes (:equivalence))

    Theorem: schar-integer-list-equiv-implies-equal-schar-integer-list-fix-1

    (defthm
        schar-integer-list-equiv-implies-equal-schar-integer-list-fix-1
      (implies (schar-integer-list-equiv acl2::x x-equiv)
               (equal (schar-integer-list-fix acl2::x)
                      (schar-integer-list-fix x-equiv)))
      :rule-classes (:congruence))

    Theorem: schar-integer-list-fix-under-schar-integer-list-equiv

    (defthm schar-integer-list-fix-under-schar-integer-list-equiv
      (schar-integer-list-equiv (schar-integer-list-fix acl2::x)
                                acl2::x)
      :rule-classes (:rewrite :rewrite-quoted-constant))

    Theorem: equal-of-schar-integer-list-fix-1-forward-to-schar-integer-list-equiv

    (defthm
     equal-of-schar-integer-list-fix-1-forward-to-schar-integer-list-equiv
     (implies (equal (schar-integer-list-fix acl2::x)
                     acl2::y)
              (schar-integer-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: equal-of-schar-integer-list-fix-2-forward-to-schar-integer-list-equiv

    (defthm
     equal-of-schar-integer-list-fix-2-forward-to-schar-integer-list-equiv
     (implies (equal acl2::x
                     (schar-integer-list-fix acl2::y))
              (schar-integer-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: schar-integer-list-equiv-of-schar-integer-list-fix-1-forward

    (defthm schar-integer-list-equiv-of-schar-integer-list-fix-1-forward
     (implies (schar-integer-list-equiv (schar-integer-list-fix acl2::x)
                                        acl2::y)
              (schar-integer-list-equiv acl2::x acl2::y))
     :rule-classes :forward-chaining)

    Theorem: schar-integer-list-equiv-of-schar-integer-list-fix-2-forward

    (defthm schar-integer-list-equiv-of-schar-integer-list-fix-2-forward
      (implies
           (schar-integer-list-equiv acl2::x
                                     (schar-integer-list-fix acl2::y))
           (schar-integer-list-equiv acl2::x acl2::y))
      :rule-classes :forward-chaining)

    Theorem: car-of-schar-integer-list-fix-x-under-schar-integer-equiv

    (defthm car-of-schar-integer-list-fix-x-under-schar-integer-equiv
      (schar-integer-equiv (car (schar-integer-list-fix acl2::x))
                           (car acl2::x)))

    Theorem: car-schar-integer-list-equiv-congruence-on-x-under-schar-integer-equiv

    (defthm
     car-schar-integer-list-equiv-congruence-on-x-under-schar-integer-equiv
     (implies (schar-integer-list-equiv acl2::x x-equiv)
              (schar-integer-equiv (car acl2::x)
                                   (car x-equiv)))
     :rule-classes :congruence)

    Theorem: cdr-of-schar-integer-list-fix-x-under-schar-integer-list-equiv

    (defthm
         cdr-of-schar-integer-list-fix-x-under-schar-integer-list-equiv
      (schar-integer-list-equiv (cdr (schar-integer-list-fix acl2::x))
                                (cdr acl2::x)))

    Theorem: cdr-schar-integer-list-equiv-congruence-on-x-under-schar-integer-list-equiv

    (defthm
     cdr-schar-integer-list-equiv-congruence-on-x-under-schar-integer-list-equiv
     (implies (schar-integer-list-equiv acl2::x x-equiv)
              (schar-integer-list-equiv (cdr acl2::x)
                                        (cdr x-equiv)))
     :rule-classes :congruence)

    Theorem: cons-of-schar-integer-fix-x-under-schar-integer-list-equiv

    (defthm cons-of-schar-integer-fix-x-under-schar-integer-list-equiv
      (schar-integer-list-equiv (cons (schar-integer-fix acl2::x)
                                      acl2::y)
                                (cons acl2::x acl2::y)))

    Theorem: cons-schar-integer-equiv-congruence-on-x-under-schar-integer-list-equiv

    (defthm
     cons-schar-integer-equiv-congruence-on-x-under-schar-integer-list-equiv
     (implies (schar-integer-equiv acl2::x x-equiv)
              (schar-integer-list-equiv (cons acl2::x acl2::y)
                                        (cons x-equiv acl2::y)))
     :rule-classes :congruence)

    Theorem: cons-of-schar-integer-list-fix-y-under-schar-integer-list-equiv

    (defthm
        cons-of-schar-integer-list-fix-y-under-schar-integer-list-equiv
      (schar-integer-list-equiv (cons acl2::x
                                      (schar-integer-list-fix acl2::y))
                                (cons acl2::x acl2::y)))

    Theorem: cons-schar-integer-list-equiv-congruence-on-y-under-schar-integer-list-equiv

    (defthm
     cons-schar-integer-list-equiv-congruence-on-y-under-schar-integer-list-equiv
     (implies (schar-integer-list-equiv acl2::y y-equiv)
              (schar-integer-list-equiv (cons acl2::x acl2::y)
                                        (cons acl2::x y-equiv)))
     :rule-classes :congruence)

    Theorem: consp-of-schar-integer-list-fix

    (defthm consp-of-schar-integer-list-fix
      (equal (consp (schar-integer-list-fix acl2::x))
             (consp acl2::x)))

    Theorem: schar-integer-list-fix-under-iff

    (defthm schar-integer-list-fix-under-iff
      (iff (schar-integer-list-fix acl2::x)
           (consp acl2::x)))

    Theorem: schar-integer-list-fix-of-cons

    (defthm schar-integer-list-fix-of-cons
      (equal (schar-integer-list-fix (cons a x))
             (cons (schar-integer-fix a)
                   (schar-integer-list-fix x))))

    Theorem: len-of-schar-integer-list-fix

    (defthm len-of-schar-integer-list-fix
      (equal (len (schar-integer-list-fix acl2::x))
             (len acl2::x)))

    Theorem: schar-integer-list-fix-of-append

    (defthm schar-integer-list-fix-of-append
      (equal (schar-integer-list-fix (append std::a std::b))
             (append (schar-integer-list-fix std::a)
                     (schar-integer-list-fix std::b))))

    Theorem: schar-integer-list-fix-of-repeat

    (defthm schar-integer-list-fix-of-repeat
      (equal (schar-integer-list-fix (repeat acl2::n acl2::x))
             (repeat acl2::n (schar-integer-fix acl2::x))))

    Theorem: list-equiv-refines-schar-integer-list-equiv

    (defthm list-equiv-refines-schar-integer-list-equiv
      (implies (list-equiv acl2::x acl2::y)
               (schar-integer-list-equiv acl2::x acl2::y))
      :rule-classes :refinement)

    Theorem: nth-of-schar-integer-list-fix

    (defthm nth-of-schar-integer-list-fix
      (equal (nth acl2::n
                  (schar-integer-list-fix acl2::x))
             (if (< (nfix acl2::n) (len acl2::x))
                 (schar-integer-fix (nth acl2::n acl2::x))
               nil)))

    Theorem: schar-integer-list-equiv-implies-schar-integer-list-equiv-append-1

    (defthm
     schar-integer-list-equiv-implies-schar-integer-list-equiv-append-1
     (implies (schar-integer-list-equiv acl2::x fty::x-equiv)
              (schar-integer-list-equiv (append acl2::x acl2::y)
                                        (append fty::x-equiv acl2::y)))
     :rule-classes (:congruence))

    Theorem: schar-integer-list-equiv-implies-schar-integer-list-equiv-append-2

    (defthm
     schar-integer-list-equiv-implies-schar-integer-list-equiv-append-2
     (implies (schar-integer-list-equiv acl2::y fty::y-equiv)
              (schar-integer-list-equiv (append acl2::x acl2::y)
                                        (append acl2::x fty::y-equiv)))
     :rule-classes (:congruence))

    Theorem: schar-integer-list-equiv-implies-schar-integer-list-equiv-nthcdr-2

    (defthm
     schar-integer-list-equiv-implies-schar-integer-list-equiv-nthcdr-2
     (implies (schar-integer-list-equiv acl2::l l-equiv)
              (schar-integer-list-equiv (nthcdr acl2::n acl2::l)
                                        (nthcdr acl2::n l-equiv)))
     :rule-classes (:congruence))

    Theorem: schar-integer-list-equiv-implies-schar-integer-list-equiv-take-2

    (defthm
       schar-integer-list-equiv-implies-schar-integer-list-equiv-take-2
      (implies (schar-integer-list-equiv acl2::l l-equiv)
               (schar-integer-list-equiv (take acl2::n acl2::l)
                                         (take acl2::n l-equiv)))
      :rule-classes (:congruence))

    Theorem: schar-integer-list-fix$inline-of-schar-integer-list-fix-x

    (defthm schar-integer-list-fix$inline-of-schar-integer-list-fix-x
      (equal (schar-integer-list-fix$inline (schar-integer-list-fix x))
             (schar-integer-list-fix$inline x)))

    Theorem: schar-integer-list-fix$inline-schar-integer-list-equiv-congruence-on-x

    (defthm
     schar-integer-list-fix$inline-schar-integer-list-equiv-congruence-on-x
     (implies (schar-integer-list-equiv x x-equiv)
              (equal (schar-integer-list-fix$inline x)
                     (schar-integer-list-fix$inline x-equiv)))
     :rule-classes :congruence)