• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
      • Kestrel-books
        • Crypto-hdwallet
        • Apt
        • Error-checking
        • Fty-extensions
        • Isar
        • Kestrel-utilities
        • Set
        • C
        • Soft
        • Bv
        • Imp-language
        • Ethereum
        • Event-macros
        • Java
        • Riscv
        • Bitcoin
        • Zcash
        • Yul
          • Transformations
          • Language
            • Abstract-syntax
              • Escape
              • Swcase-list->value-list
              • Hex-digit-list->chars
              • Fundef-list->name-list
              • Literal
              • Path
              • Hex-string-rest-element
              • Plain-string
              • String-element
              • Hex-string-content-option
              • Hex-string-content
              • Identifier
              • Funcall-option
              • Expression-option
              • Statement-option
              • Literal-option
              • Identifier-option
              • Hex-string
              • Hex-quad
              • Hex-digit
              • Hex-pair
              • Data-value
              • Data-item
              • Statements-to-fundefs
              • String-element-list-result
              • Identifier-identifier-map-result
              • Swcase-result
              • String-element-result
              • Statement-result
              • Literal-result
              • Identifier-set-result
              • Identifier-result
              • Identifier-list-result
              • Fundef-result
              • Funcall-result
              • Expression-result
              • Escape-result
              • Path-result
              • Block-result
              • Objects
              • Statements/blocks/cases/fundefs
              • Identifier-list
              • Identifier-set
              • Identifier-identifier-map
              • Identifier-identifier-alist
              • Hex-string-rest-element-list
              • String-element-list
              • Path-list
              • Hex-digit-list
              • Literal-list
              • Fundef-list
                • Fundef-list-fix
                • Fundef-list-equiv
                • Fundef-listp
                  • Fundef-listp-basics
                • Expressions/funcalls
                • Abstract-syntax-induction-schemas
              • Dynamic-semantics
              • Concrete-syntax
              • Static-soundness
              • Static-semantics
              • Errors
            • Yul-json
          • ACL2-programming-language
          • Prime-fields
          • Json
          • Syntheto
          • File-io-light
          • Cryptography
          • Number-theory
          • Axe
          • Lists-light
          • Builtins
          • Solidity
          • Helpers
          • Htclient
          • Typed-lists-light
          • Arithmetic-light
        • X86isa
        • Axe
        • Execloader
      • Math
      • Testing-utilities
    • Fundef-listp

    Fundef-listp-basics

    Basic theorems about fundef-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: fundef-listp-of-cons

    (defthm fundef-listp-of-cons
      (equal (fundef-listp (cons acl2::a acl2::x))
             (and (fundefp acl2::a)
                  (fundef-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-cdr-when-fundef-listp

    (defthm fundef-listp-of-cdr-when-fundef-listp
      (implies (fundef-listp (double-rewrite acl2::x))
               (fundef-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-when-not-consp

    (defthm fundef-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (fundef-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundefp-of-car-when-fundef-listp

    (defthm fundefp-of-car-when-fundef-listp
      (implies (fundef-listp acl2::x)
               (iff (fundefp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-fundef-listp-compound-recognizer

    (defthm true-listp-when-fundef-listp-compound-recognizer
      (implies (fundef-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: fundef-listp-of-list-fix

    (defthm fundef-listp-of-list-fix
      (implies (fundef-listp acl2::x)
               (fundef-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-sfix

    (defthm fundef-listp-of-sfix
      (iff (fundef-listp (sfix acl2::x))
           (or (fundef-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-insert

    (defthm fundef-listp-of-insert
      (iff (fundef-listp (insert acl2::a acl2::x))
           (and (fundef-listp (sfix acl2::x))
                (fundefp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-delete

    (defthm fundef-listp-of-delete
      (implies (fundef-listp acl2::x)
               (fundef-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-mergesort

    (defthm fundef-listp-of-mergesort
      (iff (fundef-listp (mergesort acl2::x))
           (fundef-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-union

    (defthm fundef-listp-of-union
      (iff (fundef-listp (union acl2::x acl2::y))
           (and (fundef-listp (sfix acl2::x))
                (fundef-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-intersect-1

    (defthm fundef-listp-of-intersect-1
      (implies (fundef-listp acl2::x)
               (fundef-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-intersect-2

    (defthm fundef-listp-of-intersect-2
      (implies (fundef-listp acl2::y)
               (fundef-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-difference

    (defthm fundef-listp-of-difference
      (implies (fundef-listp acl2::x)
               (fundef-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-duplicated-members

    (defthm fundef-listp-of-duplicated-members
      (implies (fundef-listp acl2::x)
               (fundef-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-rev

    (defthm fundef-listp-of-rev
      (equal (fundef-listp (rev acl2::x))
             (fundef-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-append

    (defthm fundef-listp-of-append
      (equal (fundef-listp (append acl2::a acl2::b))
             (and (fundef-listp (list-fix acl2::a))
                  (fundef-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-rcons

    (defthm fundef-listp-of-rcons
      (iff (fundef-listp (rcons acl2::a acl2::x))
           (and (fundefp acl2::a)
                (fundef-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: fundefp-when-member-equal-of-fundef-listp

    (defthm fundefp-when-member-equal-of-fundef-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (fundef-listp acl2::x))
                    (fundefp acl2::a))
           (implies (and (fundef-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (fundefp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-when-subsetp-equal

    (defthm fundef-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (fundef-listp acl2::y))
                    (equal (fundef-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (fundef-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (fundef-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-set-difference-equal

    (defthm fundef-listp-of-set-difference-equal
      (implies (fundef-listp acl2::x)
               (fundef-listp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-intersection-equal-1

    (defthm fundef-listp-of-intersection-equal-1
      (implies (fundef-listp (double-rewrite acl2::x))
               (fundef-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-intersection-equal-2

    (defthm fundef-listp-of-intersection-equal-2
      (implies (fundef-listp (double-rewrite acl2::y))
               (fundef-listp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-union-equal

    (defthm fundef-listp-of-union-equal
      (equal (fundef-listp (union-equal acl2::x acl2::y))
             (and (fundef-listp (list-fix acl2::x))
                  (fundef-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-take

    (defthm fundef-listp-of-take
      (implies (fundef-listp (double-rewrite acl2::x))
               (iff (fundef-listp (take acl2::n acl2::x))
                    (or (fundefp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-repeat

    (defthm fundef-listp-of-repeat
      (iff (fundef-listp (repeat acl2::n acl2::x))
           (or (fundefp acl2::x) (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: fundefp-of-nth-when-fundef-listp

    (defthm fundefp-of-nth-when-fundef-listp
      (implies (fundef-listp acl2::x)
               (iff (fundefp (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-update-nth

    (defthm fundef-listp-of-update-nth
      (implies (fundef-listp (double-rewrite acl2::x))
               (iff (fundef-listp (update-nth acl2::n acl2::y acl2::x))
                    (and (fundefp acl2::y)
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (fundefp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-butlast

    (defthm fundef-listp-of-butlast
      (implies (fundef-listp (double-rewrite acl2::x))
               (fundef-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-nthcdr

    (defthm fundef-listp-of-nthcdr
      (implies (fundef-listp (double-rewrite acl2::x))
               (fundef-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-last

    (defthm fundef-listp-of-last
      (implies (fundef-listp (double-rewrite acl2::x))
               (fundef-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-remove

    (defthm fundef-listp-of-remove
      (implies (fundef-listp acl2::x)
               (fundef-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: fundef-listp-of-revappend

    (defthm fundef-listp-of-revappend
      (equal (fundef-listp (revappend acl2::x acl2::y))
             (and (fundef-listp (list-fix acl2::x))
                  (fundef-listp acl2::y)))
      :rule-classes ((:rewrite)))