• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
            • Theorems-about-true-list-lists
              • True-list-listp-basics
            • Length
            • Search
            • Intersection$
            • Union$
            • Remove-duplicates
            • Position
            • Update-nth
            • Take
            • Set-difference$
            • Nthcdr
            • Subsetp
            • No-duplicatesp
            • Concatenate
            • Remove
            • Remove1
            • Intersectp
            • Endp
            • Keyword-value-listp
            • Integer-listp
            • Reverse
            • Add-to-set
            • List-utilities
            • Set-size
            • Revappend
            • Subseq
            • Make-list
            • Lists-light
            • Boolean-listp
            • Butlast
            • Pairlis$
            • Substitute
            • Count
            • Keyword-listp
            • List*
            • Last
            • Eqlable-listp
            • Integer-range-listp
            • Rational-listp
            • Pos-listp
            • Evens
            • Atom-listp
            • ACL2-number-listp
            • Typed-list-utilities
            • Odds
            • List$
            • Listp
            • Standard-char-listp
            • Last-cdr
            • Pairlis
            • Proper-consp
            • Improper-consp
            • Pairlis-x2
            • Pairlis-x1
            • Merge-sort-lexorder
            • Fix-true-list
            • Real-listp
          • Invariant-risk
          • Errors
          • Defabbrev
          • Conses
          • Alists
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Kestrel-utilities
    • True-list-listp
    • Std/typed-lists

    Theorems-about-true-list-lists

    Theorems about true lists of true lists.

    These are generated via std::deflist.

    Definitions and Theorems

    Theorem: true-list-listp-of-cons

    (defthm true-list-listp-of-cons
      (equal (true-list-listp (cons a x))
             (and (true-listp a)
                  (true-list-listp x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-cdr-when-true-list-listp

    (defthm true-list-listp-of-cdr-when-true-list-listp
      (implies (true-list-listp (double-rewrite x))
               (true-list-listp (cdr x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-when-not-consp

    (defthm true-list-listp-when-not-consp
      (implies (not (consp x))
               (equal (true-list-listp x) (not x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-of-car-when-true-list-listp

    (defthm true-listp-of-car-when-true-list-listp
      (implies (true-list-listp x)
               (true-listp (car x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-true-list-listp-compound-recognizer

    (defthm true-listp-when-true-list-listp-compound-recognizer
      (implies (true-list-listp x)
               (true-listp x))
      :rule-classes :compound-recognizer)

    Theorem: true-list-listp-of-list-fix

    (defthm true-list-listp-of-list-fix
      (implies (true-list-listp x)
               (true-list-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-sfix

    (defthm true-list-listp-of-sfix
      (iff (true-list-listp (set::sfix x))
           (or (true-list-listp x)
               (not (set::setp x))))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-insert

    (defthm true-list-listp-of-insert
      (iff (true-list-listp (set::insert a x))
           (and (true-list-listp (set::sfix x))
                (true-listp a)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-delete

    (defthm true-list-listp-of-delete
      (implies (true-list-listp x)
               (true-list-listp (set::delete k x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-mergesort

    (defthm true-list-listp-of-mergesort
      (iff (true-list-listp (set::mergesort x))
           (true-list-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-union

    (defthm true-list-listp-of-union
      (iff (true-list-listp (set::union x y))
           (and (true-list-listp (set::sfix x))
                (true-list-listp (set::sfix y))))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-intersect-1

    (defthm true-list-listp-of-intersect-1
      (implies (true-list-listp x)
               (true-list-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-intersect-2

    (defthm true-list-listp-of-intersect-2
      (implies (true-list-listp y)
               (true-list-listp (set::intersect x y)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-difference

    (defthm true-list-listp-of-difference
      (implies (true-list-listp x)
               (true-list-listp (set::difference x y)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-duplicated-members

    (defthm true-list-listp-of-duplicated-members
      (implies (true-list-listp x)
               (true-list-listp (duplicated-members x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-rev

    (defthm true-list-listp-of-rev
      (equal (true-list-listp (rev x))
             (true-list-listp (list-fix x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-append

    (defthm true-list-listp-of-append
      (equal (true-list-listp (append a b))
             (and (true-list-listp (list-fix a))
                  (true-list-listp b)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-rcons

    (defthm true-list-listp-of-rcons
      (iff (true-list-listp (rcons a x))
           (and (true-listp a)
                (true-list-listp (list-fix x))))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-member-equal-of-true-list-listp

    (defthm true-listp-when-member-equal-of-true-list-listp
      (and (implies (and (member-equal a x)
                         (true-list-listp x))
                    (true-listp a))
           (implies (and (true-list-listp x)
                         (member-equal a x))
                    (true-listp a)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-when-subsetp-equal

    (defthm true-list-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal x y)
                         (true-list-listp y))
                    (equal (true-list-listp x)
                           (true-listp x)))
           (implies (and (true-list-listp y)
                         (subsetp-equal x y))
                    (equal (true-list-listp x)
                           (true-listp x))))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-set-difference-equal

    (defthm true-list-listp-of-set-difference-equal
      (implies (true-list-listp x)
               (true-list-listp (set-difference-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-intersection-equal-1

    (defthm true-list-listp-of-intersection-equal-1
      (implies (true-list-listp (double-rewrite x))
               (true-list-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-intersection-equal-2

    (defthm true-list-listp-of-intersection-equal-2
      (implies (true-list-listp (double-rewrite y))
               (true-list-listp (intersection-equal x y)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-union-equal

    (defthm true-list-listp-of-union-equal
      (equal (true-list-listp (union-equal x y))
             (and (true-list-listp (list-fix x))
                  (true-list-listp (double-rewrite y))))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-take

    (defthm true-list-listp-of-take
      (implies (true-list-listp (double-rewrite x))
               (iff (true-list-listp (take n x))
                    (or (true-listp nil)
                        (<= (nfix n) (len x)))))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-repeat

    (defthm true-list-listp-of-repeat
      (iff (true-list-listp (repeat n x))
           (or (true-listp x) (zp n)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-of-nth-when-true-list-listp

    (defthm true-listp-of-nth-when-true-list-listp
      (implies (true-list-listp x)
               (true-listp (nth n x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-update-nth

    (defthm true-list-listp-of-update-nth
      (implies (true-list-listp (double-rewrite x))
               (iff (true-list-listp (update-nth n y x))
                    (and (true-listp y)
                         (or (<= (nfix n) (len x))
                             (true-listp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-butlast

    (defthm true-list-listp-of-butlast
      (implies (true-list-listp (double-rewrite x))
               (true-list-listp (butlast x n)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-nthcdr

    (defthm true-list-listp-of-nthcdr
      (implies (true-list-listp (double-rewrite x))
               (true-list-listp (nthcdr n x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-last

    (defthm true-list-listp-of-last
      (implies (true-list-listp (double-rewrite x))
               (true-list-listp (last x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-remove

    (defthm true-list-listp-of-remove
      (implies (true-list-listp x)
               (true-list-listp (remove a x)))
      :rule-classes ((:rewrite)))

    Theorem: true-list-listp-of-revappend

    (defthm true-list-listp-of-revappend
      (equal (true-list-listp (revappend x y))
             (and (true-list-listp (list-fix x))
                  (true-list-listp y)))
      :rule-classes ((:rewrite)))