• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
          • Member
          • Append
          • List
          • Nth
          • Len
          • True-listp
            • True-list-listp
            • List-fix
              • Llist-fix
            • True-list-fix
            • The-true-list
            • Std/lists/true-listp
          • String-listp
          • Nat-listp
          • Character-listp
          • Symbol-listp
          • True-list-listp
          • Length
          • Search
          • Intersection$
          • Union$
          • Remove-duplicates
          • Position
          • Update-nth
          • Take
          • Set-difference$
          • Nthcdr
          • Subsetp
          • No-duplicatesp
          • Concatenate
          • Remove
          • Remove1
          • Intersectp
          • Endp
          • Keyword-value-listp
          • Integer-listp
          • Reverse
          • Add-to-set
          • List-utilities
          • Set-size
          • Revappend
          • Subseq
          • Make-list
          • Lists-light
          • Boolean-listp
          • Butlast
          • Pairlis$
          • Substitute
          • Count
          • Keyword-listp
          • List*
          • Last
          • Eqlable-listp
          • Integer-range-listp
          • Rational-listp
          • Pos-listp
          • Evens
          • Atom-listp
          • ACL2-number-listp
          • Typed-list-utilities
          • Odds
          • List$
          • Listp
          • Standard-char-listp
          • Last-cdr
          • Pairlis
          • Proper-consp
          • Improper-consp
          • Pairlis-x2
          • Pairlis-x1
          • Merge-sort-lexorder
          • Fix-true-list
          • Real-listp
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
        • Set-register-invariant-risk
        • Strings
        • Program-wrapper
        • Get-internal-time
        • Basics
        • Packages
        • Oracle-eval
        • Defmacro-untouchable
        • <<
        • Primitive
        • Revert-world
        • Unmemoize
        • Set-duplicate-keys-action
        • Symbols
        • Def-list-constructor
        • Easy-simplify-term
        • Defiteration
        • Fake-oracle-eval
        • Defopen
        • Sleep
      • Operational-semantics
      • Real
      • Start-here
      • Miscellaneous
      • Output-controls
      • Bdd
      • Macros
      • Installation
      • Mailing-lists
    • Interfacing-tools
    • Hardware-verification
    • Software-verification
    • Math
    • Testing-utilities
  • Std/lists
  • True-listp

List-fix

(list-fix x) converts x into a true-listp by, if necessary, changing its final-cdr to nil.

list-fix is really a macro which expands to a call to true-list-fix with the same argument.

See also llist-fix, a "logical list fix" that is guarded with true-listp for greater efficiency.

Macro: list-fix-exec

(defmacro list-fix-exec (x)
  (cons 'true-list-fix-exec
        (cons x 'nil)))

Macro: list-fix

(defmacro list-fix (x)
  (cons 'true-list-fix (cons x 'nil)))

Definitions and Theorems

Theorem: list-fix-when-not-consp

(defthm list-fix-when-not-consp
  (implies (not (consp x))
           (equal (list-fix x) nil)))

Theorem: list-fix-of-cons

(defthm list-fix-of-cons
  (equal (list-fix (cons a x))
         (cons a (list-fix x))))

Theorem: list-fix-exec-removal

(defthm list-fix-exec-removal
  (equal (list-fix-exec x) (list-fix x)))

Theorem: car-of-list-fix

(defthm car-of-list-fix
  (equal (car (list-fix x)) (car x)))

Theorem: cdr-of-list-fix

(defthm cdr-of-list-fix
  (equal (cdr (list-fix x))
         (list-fix (cdr x))))

Theorem: list-fix-when-len-zero

(defthm list-fix-when-len-zero
  (implies (equal (len x) 0)
           (equal (list-fix x) nil)))

Theorem: true-listp-of-list-fix

(defthm true-listp-of-list-fix
  (true-listp (list-fix x)))

Theorem: len-of-list-fix

(defthm len-of-list-fix
  (equal (len (list-fix x)) (len x)))

Theorem: list-fix-when-true-listp

(defthm list-fix-when-true-listp
  (implies (true-listp x)
           (equal (list-fix x) x)))

Theorem: list-fix-under-iff

(defthm list-fix-under-iff
  (iff (list-fix x) (consp x)))

Theorem: consp-of-list-fix

(defthm consp-of-list-fix
  (equal (consp (list-fix x)) (consp x)))

Theorem: last-of-list-fix

(defthm last-of-list-fix
  (equal (last (list-fix x))
         (list-fix (last x))))

Theorem: equal-of-list-fix-and-self

(defthm equal-of-list-fix-and-self
  (equal (equal x (list-fix x))
         (true-listp x)))

Theorem: element-list-p-of-list-fix-non-true-listp

(defthm element-list-p-of-list-fix-non-true-listp
  (implies (element-list-final-cdr-p t)
           (equal (element-list-p (list-fix x))
                  (element-list-p x)))
  :rule-classes :rewrite)

Theorem: element-list-p-of-list-fix-true-listp

(defthm element-list-p-of-list-fix-true-listp
  (implies (element-list-p x)
           (element-list-p (list-fix x)))
  :rule-classes :rewrite)

Theorem: element-list-fix-of-list-fix-true-list

(defthm element-list-fix-of-list-fix-true-list
  (implies (not (element-list-final-cdr-p t))
           (equal (element-list-fix (list-fix x))
                  (element-list-fix x)))
  :rule-classes :rewrite)

Theorem: element-list-fix-of-list-fix-non-true-list

(defthm element-list-fix-of-list-fix-non-true-list
  (implies (element-list-final-cdr-p t)
           (equal (element-list-fix (list-fix x))
                  (list-fix (element-list-fix x))))
  :rule-classes :rewrite)

Theorem: elementlist-projection-of-list-fix

(defthm elementlist-projection-of-list-fix
  (equal (elementlist-projection (list-fix x))
         (elementlist-projection x))
  :rule-classes :rewrite)

Theorem: elementlist-mapappend-of-list-fix

(defthm elementlist-mapappend-of-list-fix
  (equal (elementlist-mapappend (list-fix x))
         (elementlist-mapappend x))
  :rule-classes :rewrite)

Subtopics

Llist-fix
(llist-fix x) is locally just list-fix, but it is guarded with true-listp so that in the execution it is just an identity function.