• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Community
    • Std
    • Proof-automation
    • Macro-libraries
    • ACL2
      • Theories
      • Rule-classes
      • Proof-builder
      • Recursion-and-induction
      • Hons-and-memoization
      • Events
      • Parallelism
      • History
      • Programming
        • Defun
        • Declare
        • System-utilities
        • Stobj
        • State
        • Mutual-recursion
        • Memoize
        • Mbe
        • Io
        • Defpkg
        • Apply$
        • Loop$
        • Programming-with-state
        • Arrays
        • Characters
        • Time$
        • Defconst
        • Fast-alists
        • Defmacro
        • Loop$-primer
        • Evaluation
        • Guard
        • Equality-variants
        • Compilation
        • Hons
        • ACL2-built-ins
        • Developers-guide
        • System-attachments
        • Advanced-features
        • Set-check-invariant-risk
        • Numbers
        • Efficiency
        • Irrelevant-formals
        • Introduction-to-programming-in-ACL2-for-those-who-know-lisp
        • Redefining-programs
        • Lists
        • Invariant-risk
        • Errors
        • Defabbrev
        • Conses
        • Alists
          • Std/alists
            • Alist-keys
            • Remove-assocs
            • Alist-vals
            • Alist-map-vals
            • Alist-map-keys
            • Std/alists/strip-cdrs
              • Hons-rassoc-equal
              • Std/alists/hons-assoc-equal
              • Std/alists/strip-cars
              • Fal-find-any
              • Fal-extract
              • Std/alists/abstract
              • Fal-extract-vals
              • Fal-all-boundp
              • Std/alists/alistp
              • Append-alist-vals
              • Append-alist-keys
              • Alist-equiv
              • Hons-remove-assoc
              • Std/alists/pairlis$
              • Worth-hashing
              • Alists-agree
              • Sub-alistp
              • Alist-fix
              • Std/alists/remove-assoc-equal
              • Std/alists/assoc-equal
            • Fast-alists
            • Alistp
            • Misc/records
            • Assoc
            • Remove-assocs
            • Symbol-alistp
            • Rassoc
            • Remove-assoc
            • Depgraph
            • Remove1-assoc
            • Alist-map-vals
            • Alist-map-keys
            • Put-assoc
            • Strip-cars
            • Pairlis$
            • Strip-cdrs
            • Sublis
            • Acons
            • Eqlable-alistp
            • Assoc-string-equal
            • Alist-to-doublets
            • Character-alistp
            • String-alistp
            • Alist-keys-subsetp
            • R-symbol-alistp
            • R-eqlable-alistp
            • Pairlis
            • Pairlis-x2
            • Pairlis-x1
            • Delete-assoc
          • Set-register-invariant-risk
          • Strings
          • Program-wrapper
          • Get-internal-time
          • Basics
          • Packages
          • Oracle-eval
          • Defmacro-untouchable
          • <<
          • Primitive
          • Revert-world
          • Unmemoize
          • Set-duplicate-keys-action
          • Symbols
          • Def-list-constructor
          • Easy-simplify-term
          • Defiteration
          • Fake-oracle-eval
          • Defopen
          • Sleep
        • Operational-semantics
        • Real
        • Start-here
        • Miscellaneous
        • Output-controls
        • Bdd
        • Macros
        • Installation
        • Mailing-lists
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Std/alists
    • Strip-cdrs

    Std/alists/strip-cdrs

    Lemmas about strip-cdrs available in the std/alists library.

    Note that strip-cdrs is a "traditional" alist function: it has an alistp guard and fails to respect the non-alist convention. We generally prefer to work with alist-vals instead.

    Even so, we provide many lemmas for working with strip-cdrs, in case for some reason that's what you want to do.

    Definitions and Theorems

    Theorem: strip-cdrs-when-atom

    (defthm strip-cdrs-when-atom
      (implies (atom x)
               (equal (strip-cdrs x) nil)))

    Theorem: strip-cdrs-of-cons

    (defthm strip-cdrs-of-cons
      (equal (strip-cdrs (cons a x))
             (cons (cdr a) (strip-cdrs x))))

    Theorem: len-of-strip-cdrs

    (defthm len-of-strip-cdrs
      (equal (len (strip-cdrs x)) (len x)))

    Theorem: consp-of-strip-cdrs

    (defthm consp-of-strip-cdrs
      (equal (consp (strip-cdrs x))
             (consp x)))

    Theorem: car-of-strip-cdrs

    (defthm car-of-strip-cdrs
      (equal (car (strip-cdrs x))
             (cdr (car x))))

    Theorem: cdr-of-strip-cdrs

    (defthm cdr-of-strip-cdrs
      (equal (cdr (strip-cdrs x))
             (strip-cdrs (cdr x))))

    Theorem: strip-cdrs-under-iff

    (defthm strip-cdrs-under-iff
      (iff (strip-cdrs x) (consp x)))

    Theorem: strip-cdrs-of-list-fix

    (defthm strip-cdrs-of-list-fix
      (equal (strip-cdrs (list-fix x))
             (strip-cdrs x)))

    Theorem: list-equiv-implies-equal-strip-cdrs-1

    (defthm list-equiv-implies-equal-strip-cdrs-1
      (implies (list-equiv x x-equiv)
               (equal (strip-cdrs x)
                      (strip-cdrs x-equiv)))
      :rule-classes (:congruence))

    Theorem: set-equiv-implies-set-equiv-strip-cdrs-1

    (defthm set-equiv-implies-set-equiv-strip-cdrs-1
      (implies (set-equiv x x-equiv)
               (set-equiv (strip-cdrs x)
                          (strip-cdrs x-equiv)))
      :rule-classes (:congruence))

    Theorem: strip-cdrs-of-append

    (defthm strip-cdrs-of-append
      (equal (strip-cdrs (append x y))
             (append (strip-cdrs x) (strip-cdrs y))))

    Theorem: strip-cdrs-of-rev

    (defthm strip-cdrs-of-rev
      (equal (strip-cdrs (rev x))
             (rev (strip-cdrs x))))

    Theorem: strip-cdrs-of-revappend

    (defthm strip-cdrs-of-revappend
      (equal (strip-cdrs (revappend x y))
             (revappend (strip-cdrs x)
                        (strip-cdrs y))))

    Theorem: strip-cdrs-of-repeat

    (defthm strip-cdrs-of-repeat
      (equal (strip-cdrs (repeat n x))
             (repeat n (cdr x))))

    Theorem: strip-cdrs-of-take

    (defthm strip-cdrs-of-take
      (equal (strip-cdrs (take n x))
             (take n (strip-cdrs x))))

    Theorem: strip-cdrs-of-nthcdr

    (defthm strip-cdrs-of-nthcdr
      (equal (strip-cdrs (nthcdr n x))
             (nthcdr n (strip-cdrs x))))

    Theorem: strip-cdrs-of-last

    (defthm strip-cdrs-of-last
      (equal (strip-cdrs (last x))
             (last (strip-cdrs x))))

    Theorem: strip-cdrs-of-butlast

    (defthm strip-cdrs-of-butlast
      (equal (strip-cdrs (butlast x n))
             (butlast (strip-cdrs x) n)))

    Theorem: strip-cdrs-of-pairlis$

    (defthm strip-cdrs-of-pairlis$
      (equal (strip-cdrs (pairlis$ x y))
             (take (len x) y)))