• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Ethereum
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
      • Zcash
      • Des
      • X86isa
      • Sha-2
      • Yul
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Axe
      • Poseidon
      • Where-do-i-place-my-book
      • Aleo
      • Bigmems
      • Builtins
      • Execloader
      • Solidity
      • Paco
      • Concurrent-programs
      • Bls12-377-curves
        • Edwards-bls12
          • Edwards-bls12-pointp
          • Edwards-bls12-q
          • Edwards-bls12-d
          • Edwards-bls12-point->v
          • Edwards-bls12-point->u
            • Maybe-edwards-bls12-pointp
            • Edwards-bls12-add
            • Edwards-bls12-mul-fast
            • Edwards-bls12-rstar-pointp
            • Edwards-bls12-r-pointp
            • Edwards-bls12-mul
            • Edwards-bls12-a
            • Edwards-bls12-neg
            • Edwards-bls12-curve
            • Edwards-bls12-r
            • Edwards-bls12-h
            • Edwards-bls12-subgroup-prime
          • Bls12-377-domain-parameters
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Edwards-bls12

    Edwards-bls12-point->u

    The function \mathcal{U} in TODO

    Signature
    (edwards-bls12-point->u point) → u
    Arguments
    point — Guard (edwards-bls12-pointp point).
    Returns
    u — Type (natp u).

    This function can be defined on any finite point (in fact, on any pair), but it is only used on Edwards-BLS12 points.

    This is always below the Edwards-BLS12 field prime.

    Definitions and Theorems

    Function: edwards-bls12-point->u

    (defun edwards-bls12-point->u (point)
      (declare (xargs :guard (edwards-bls12-pointp point)))
      (let ((acl2::__function__ 'edwards-bls12-point->u))
        (declare (ignorable acl2::__function__))
        (point-finite->x point)))

    Theorem: natp-of-edwards-bls12-point->u

    (defthm natp-of-edwards-bls12-point->u
      (b* ((u (edwards-bls12-point->u point)))
        (natp u))
      :rule-classes :type-prescription)

    Theorem: edwards-bls12-point->u-upper-bound

    (defthm edwards-bls12-point->u-upper-bound
      (implies (edwards-bls12-pointp point)
               (b* ((acl2::?u (edwards-bls12-point->u point)))
                 (< u (edwards-bls12-q))))
      :rule-classes :linear)