• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
        • Defisar
          • Defisar-implementation
            • Keyword-fact-info-alistp
              • Defisar-assume
              • Defisar-derive
              • Defisar-commands
              • Fact-infop
              • Defisar-qed
              • Defisar-let
              • Defisar-derive-thm-hyps
              • Defisar-proof
              • Defisar-fn
              • Fact-info-listp
              • Fact-info-list->thm-name-list
              • Defisar-formula-to-hyps+concl
              • Defisar-macro-definition-synonym
              • Defisar-macro-definition
        • Wp-gen
        • Dimacs-reader
        • Pfcs
        • Legacy-defrstobj
        • C
        • Proof-checker-array
        • Soft
        • Farray
        • Rp-rewriter
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Ethereum
        • Leftist-trees
        • Java
        • Riscv
        • Taspi
        • Bitcoin
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Defisar-implementation

    Keyword-fact-info-alistp

    Recognize alists from keywords to fact information.

    An alist of this type stores information about all the facts proved so far when running the proof.

    Definitions and Theorems

    Function: keyword-fact-info-alistp

    (defun keyword-fact-info-alistp (x)
      (declare (xargs :guard t))
      (if (consp x)
          (and (consp (car x))
               (keywordp (caar x))
               (fact-infop (cdar x))
               (keyword-fact-info-alistp (cdr x)))
        (null x)))

    Theorem: keyword-fact-info-alistp-of-revappend

    (defthm keyword-fact-info-alistp-of-revappend
      (equal (keyword-fact-info-alistp (revappend acl2::x acl2::y))
             (and (keyword-fact-info-alistp (list-fix acl2::x))
                  (keyword-fact-info-alistp acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-remove

    (defthm keyword-fact-info-alistp-of-remove
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-last

    (defthm keyword-fact-info-alistp-of-last
      (implies (keyword-fact-info-alistp (double-rewrite acl2::x))
               (keyword-fact-info-alistp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-nthcdr

    (defthm keyword-fact-info-alistp-of-nthcdr
      (implies (keyword-fact-info-alistp (double-rewrite acl2::x))
               (keyword-fact-info-alistp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-butlast

    (defthm keyword-fact-info-alistp-of-butlast
      (implies (keyword-fact-info-alistp (double-rewrite acl2::x))
               (keyword-fact-info-alistp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-update-nth

    (defthm keyword-fact-info-alistp-of-update-nth
     (implies
      (keyword-fact-info-alistp (double-rewrite acl2::x))
      (iff
         (keyword-fact-info-alistp (update-nth acl2::n acl2::y acl2::x))
         (and (and (consp acl2::y)
                   (keywordp (car acl2::y))
                   (fact-infop (cdr acl2::y)))
              (or (<= (nfix acl2::n) (len acl2::x))
                  (and (consp nil)
                       (keywordp (car nil))
                       (fact-infop (cdr nil)))))))
     :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-repeat

    (defthm keyword-fact-info-alistp-of-repeat
      (iff (keyword-fact-info-alistp (repeat acl2::n acl2::x))
           (or (and (consp acl2::x)
                    (keywordp (car acl2::x))
                    (fact-infop (cdr acl2::x)))
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-take

    (defthm keyword-fact-info-alistp-of-take
      (implies (keyword-fact-info-alistp (double-rewrite acl2::x))
               (iff (keyword-fact-info-alistp (take acl2::n acl2::x))
                    (or (and (consp nil)
                             (keywordp (car nil))
                             (fact-infop (cdr nil)))
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-union-equal

    (defthm keyword-fact-info-alistp-of-union-equal
      (equal (keyword-fact-info-alistp (union-equal acl2::x acl2::y))
             (and (keyword-fact-info-alistp (list-fix acl2::x))
                  (keyword-fact-info-alistp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-intersection-equal-2

    (defthm keyword-fact-info-alistp-of-intersection-equal-2
     (implies
        (keyword-fact-info-alistp (double-rewrite acl2::y))
        (keyword-fact-info-alistp (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-intersection-equal-1

    (defthm keyword-fact-info-alistp-of-intersection-equal-1
     (implies
        (keyword-fact-info-alistp (double-rewrite acl2::x))
        (keyword-fact-info-alistp (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-set-difference-equal

    (defthm keyword-fact-info-alistp-of-set-difference-equal
     (implies
      (keyword-fact-info-alistp acl2::x)
      (keyword-fact-info-alistp (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-when-subsetp-equal

    (defthm keyword-fact-info-alistp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (keyword-fact-info-alistp acl2::y))
                    (equal (keyword-fact-info-alistp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (keyword-fact-info-alistp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (keyword-fact-info-alistp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-rcons

    (defthm keyword-fact-info-alistp-of-rcons
      (iff (keyword-fact-info-alistp (rcons acl2::a acl2::x))
           (and (and (consp acl2::a)
                     (keywordp (car acl2::a))
                     (fact-infop (cdr acl2::a)))
                (keyword-fact-info-alistp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-append

    (defthm keyword-fact-info-alistp-of-append
      (equal (keyword-fact-info-alistp (append acl2::a acl2::b))
             (and (keyword-fact-info-alistp (list-fix acl2::a))
                  (keyword-fact-info-alistp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-rev

    (defthm keyword-fact-info-alistp-of-rev
      (equal (keyword-fact-info-alistp (rev acl2::x))
             (keyword-fact-info-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-duplicated-members

    (defthm keyword-fact-info-alistp-of-duplicated-members
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-difference

    (defthm keyword-fact-info-alistp-of-difference
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-intersect-2

    (defthm keyword-fact-info-alistp-of-intersect-2
      (implies (keyword-fact-info-alistp acl2::y)
               (keyword-fact-info-alistp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-intersect-1

    (defthm keyword-fact-info-alistp-of-intersect-1
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-union

    (defthm keyword-fact-info-alistp-of-union
      (iff (keyword-fact-info-alistp (union acl2::x acl2::y))
           (and (keyword-fact-info-alistp (sfix acl2::x))
                (keyword-fact-info-alistp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-mergesort

    (defthm keyword-fact-info-alistp-of-mergesort
      (iff (keyword-fact-info-alistp (mergesort acl2::x))
           (keyword-fact-info-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-delete

    (defthm keyword-fact-info-alistp-of-delete
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-insert

    (defthm keyword-fact-info-alistp-of-insert
      (iff (keyword-fact-info-alistp (insert acl2::a acl2::x))
           (and (keyword-fact-info-alistp (sfix acl2::x))
                (and (consp acl2::a)
                     (keywordp (car acl2::a))
                     (fact-infop (cdr acl2::a)))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-sfix

    (defthm keyword-fact-info-alistp-of-sfix
      (iff (keyword-fact-info-alistp (sfix acl2::x))
           (or (keyword-fact-info-alistp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-list-fix

    (defthm keyword-fact-info-alistp-of-list-fix
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-keyword-fact-info-alistp-compound-recognizer

    (defthm true-listp-when-keyword-fact-info-alistp-compound-recognizer
      (implies (keyword-fact-info-alistp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: keyword-fact-info-alistp-when-not-consp

    (defthm keyword-fact-info-alistp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (keyword-fact-info-alistp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-cdr-when-keyword-fact-info-alistp

    (defthm
          keyword-fact-info-alistp-of-cdr-when-keyword-fact-info-alistp
      (implies (keyword-fact-info-alistp (double-rewrite acl2::x))
               (keyword-fact-info-alistp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-cons

    (defthm keyword-fact-info-alistp-of-cons
      (equal (keyword-fact-info-alistp (cons acl2::a acl2::x))
             (and (and (consp acl2::a)
                       (keywordp (car acl2::a))
                       (fact-infop (cdr acl2::a)))
                  (keyword-fact-info-alistp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-make-fal

    (defthm keyword-fact-info-alistp-of-make-fal
      (implies (and (keyword-fact-info-alistp acl2::x)
                    (keyword-fact-info-alistp acl2::y))
               (keyword-fact-info-alistp (make-fal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: fact-infop-of-cdr-when-member-equal-of-keyword-fact-info-alistp

    (defthm
        fact-infop-of-cdr-when-member-equal-of-keyword-fact-info-alistp
      (and (implies (and (keyword-fact-info-alistp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (fact-infop (cdr acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (keyword-fact-info-alistp acl2::x))
                    (fact-infop (cdr acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: keywordp-of-car-when-member-equal-of-keyword-fact-info-alistp

    (defthm
          keywordp-of-car-when-member-equal-of-keyword-fact-info-alistp
      (and (implies (and (keyword-fact-info-alistp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (keywordp (car acl2::a)))
           (implies (and (member-equal acl2::a acl2::x)
                         (keyword-fact-info-alistp acl2::x))
                    (keywordp (car acl2::a))))
      :rule-classes ((:rewrite)))

    Theorem: consp-when-member-equal-of-keyword-fact-info-alistp

    (defthm consp-when-member-equal-of-keyword-fact-info-alistp
      (implies (and (keyword-fact-info-alistp acl2::x)
                    (member-equal acl2::a acl2::x))
               (consp acl2::a))
      :rule-classes
      ((:rewrite :backchain-limit-lst (0 0))
       (:rewrite
            :backchain-limit-lst (0 0)
            :corollary (implies (if (member-equal acl2::a acl2::x)
                                    (keyword-fact-info-alistp acl2::x)
                                  'nil)
                                (consp acl2::a)))))

    Theorem: keyword-fact-info-alistp-of-remove-assoc

    (defthm keyword-fact-info-alistp-of-remove-assoc
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp
                    (remove-assoc-equal acl2::name acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-put-assoc

    (defthm keyword-fact-info-alistp-of-put-assoc
      (implies (and (keyword-fact-info-alistp acl2::x))
               (iff (keyword-fact-info-alistp
                         (put-assoc-equal acl2::name acl2::val acl2::x))
                    (and (keywordp acl2::name)
                         (fact-infop acl2::val))))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-fast-alist-clean

    (defthm keyword-fact-info-alistp-of-fast-alist-clean
      (implies (keyword-fact-info-alistp acl2::x)
               (keyword-fact-info-alistp (fast-alist-clean acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-hons-shrink-alist

    (defthm keyword-fact-info-alistp-of-hons-shrink-alist
     (implies
         (and (keyword-fact-info-alistp acl2::x)
              (keyword-fact-info-alistp acl2::y))
         (keyword-fact-info-alistp (hons-shrink-alist acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: keyword-fact-info-alistp-of-hons-acons

    (defthm keyword-fact-info-alistp-of-hons-acons
     (equal
         (keyword-fact-info-alistp (hons-acons acl2::a acl2::n acl2::x))
         (and (keywordp acl2::a)
              (fact-infop acl2::n)
              (keyword-fact-info-alistp acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: fact-infop-of-cdr-of-hons-assoc-equal-when-keyword-fact-info-alistp

    (defthm
     fact-infop-of-cdr-of-hons-assoc-equal-when-keyword-fact-info-alistp
     (implies (keyword-fact-info-alistp acl2::x)
              (iff (fact-infop (cdr (hons-assoc-equal acl2::k acl2::x)))
                   (or (hons-assoc-equal acl2::k acl2::x)
                       (fact-infop nil))))
     :rule-classes ((:rewrite)))

    Theorem: alistp-when-keyword-fact-info-alistp-rewrite

    (defthm alistp-when-keyword-fact-info-alistp-rewrite
      (implies (keyword-fact-info-alistp acl2::x)
               (alistp acl2::x))
      :rule-classes ((:rewrite)))

    Theorem: alistp-when-keyword-fact-info-alistp

    (defthm alistp-when-keyword-fact-info-alistp
      (implies (keyword-fact-info-alistp acl2::x)
               (alistp acl2::x))
      :rule-classes :tau-system)

    Theorem: fact-infop-of-cdar-when-keyword-fact-info-alistp

    (defthm fact-infop-of-cdar-when-keyword-fact-info-alistp
      (implies (keyword-fact-info-alistp acl2::x)
               (iff (fact-infop (cdar acl2::x))
                    (or (consp acl2::x) (fact-infop nil))))
      :rule-classes ((:rewrite)))

    Theorem: keywordp-of-caar-when-keyword-fact-info-alistp

    (defthm keywordp-of-caar-when-keyword-fact-info-alistp
      (implies (keyword-fact-info-alistp acl2::x)
               (iff (keywordp (caar acl2::x))
                    (or (consp acl2::x) (keywordp nil))))
      :rule-classes ((:rewrite)))

    Theorem: fact-info-listp-of-strip-cdr-when-keyword-fact-info-alistp

    (defthm fact-info-listp-of-strip-cdr-when-keyword-fact-info-alistp
      (implies (keyword-fact-info-alistp x)
               (fact-info-listp (strip-cdrs x))))