• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Ethereum
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
        • Bip32
        • Bech32
        • Bip39
        • Bip44
        • Base58
          • Base58-encode
          • Base58-decode
          • Base58-character
          • Base58-value
          • Base58-val=>char
          • Base58-vals=>chars
          • Base58-chars=>vals
          • Base58-char=>val
          • *base58-characters*
          • Base58-value-list
          • Base58-character-list
            • Base58-character-list-fix
            • Base58-character-list-equiv
            • Base58-character-listp
              • Base58-character-listp-basics
            • *base58-zero*
          • Bip43
          • Bytes
          • Base58check
          • Cryptography
          • Bip-350
          • Bip-173
        • Zcash
        • Des
        • X86isa
        • Sha-2
        • Yul
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Base58-character-listp

    Base58-character-listp-basics

    Basic theorems about base58-character-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: base58-character-listp-of-cons

    (defthm base58-character-listp-of-cons
      (equal (base58-character-listp (cons acl2::a acl2::x))
             (and (base58-characterp acl2::a)
                  (base58-character-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-cdr-when-base58-character-listp

    (defthm base58-character-listp-of-cdr-when-base58-character-listp
      (implies (base58-character-listp (double-rewrite acl2::x))
               (base58-character-listp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-when-not-consp

    (defthm base58-character-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (base58-character-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-characterp-of-car-when-base58-character-listp

    (defthm base58-characterp-of-car-when-base58-character-listp
      (implies (base58-character-listp acl2::x)
               (iff (base58-characterp (car acl2::x))
                    (consp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-base58-character-listp-compound-recognizer

    (defthm true-listp-when-base58-character-listp-compound-recognizer
      (implies (base58-character-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: base58-character-listp-of-list-fix

    (defthm base58-character-listp-of-list-fix
      (implies (base58-character-listp acl2::x)
               (base58-character-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-sfix

    (defthm base58-character-listp-of-sfix
      (iff (base58-character-listp (sfix acl2::x))
           (or (base58-character-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-insert

    (defthm base58-character-listp-of-insert
      (iff (base58-character-listp (insert acl2::a acl2::x))
           (and (base58-character-listp (sfix acl2::x))
                (base58-characterp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-delete

    (defthm base58-character-listp-of-delete
      (implies (base58-character-listp acl2::x)
               (base58-character-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-mergesort

    (defthm base58-character-listp-of-mergesort
      (iff (base58-character-listp (mergesort acl2::x))
           (base58-character-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-union

    (defthm base58-character-listp-of-union
      (iff (base58-character-listp (union acl2::x acl2::y))
           (and (base58-character-listp (sfix acl2::x))
                (base58-character-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-intersect-1

    (defthm base58-character-listp-of-intersect-1
      (implies (base58-character-listp acl2::x)
               (base58-character-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-intersect-2

    (defthm base58-character-listp-of-intersect-2
      (implies (base58-character-listp acl2::y)
               (base58-character-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-difference

    (defthm base58-character-listp-of-difference
      (implies (base58-character-listp acl2::x)
               (base58-character-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-duplicated-members

    (defthm base58-character-listp-of-duplicated-members
      (implies (base58-character-listp acl2::x)
               (base58-character-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-rev

    (defthm base58-character-listp-of-rev
      (equal (base58-character-listp (rev acl2::x))
             (base58-character-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-append

    (defthm base58-character-listp-of-append
      (equal (base58-character-listp (append acl2::a acl2::b))
             (and (base58-character-listp (list-fix acl2::a))
                  (base58-character-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-rcons

    (defthm base58-character-listp-of-rcons
      (iff (base58-character-listp (rcons acl2::a acl2::x))
           (and (base58-characterp acl2::a)
                (base58-character-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: base58-characterp-when-member-equal-of-base58-character-listp

    (defthm
          base58-characterp-when-member-equal-of-base58-character-listp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (base58-character-listp acl2::x))
                    (base58-characterp acl2::a))
           (implies (and (base58-character-listp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (base58-characterp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-when-subsetp-equal

    (defthm base58-character-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (base58-character-listp acl2::y))
                    (equal (base58-character-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (base58-character-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (base58-character-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-set-difference-equal

    (defthm base58-character-listp-of-set-difference-equal
     (implies
        (base58-character-listp acl2::x)
        (base58-character-listp (set-difference-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-intersection-equal-1

    (defthm base58-character-listp-of-intersection-equal-1
     (implies
          (base58-character-listp (double-rewrite acl2::x))
          (base58-character-listp (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-intersection-equal-2

    (defthm base58-character-listp-of-intersection-equal-2
     (implies
          (base58-character-listp (double-rewrite acl2::y))
          (base58-character-listp (intersection-equal acl2::x acl2::y)))
     :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-union-equal

    (defthm base58-character-listp-of-union-equal
      (equal (base58-character-listp (union-equal acl2::x acl2::y))
             (and (base58-character-listp (list-fix acl2::x))
                  (base58-character-listp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-take

    (defthm base58-character-listp-of-take
      (implies (base58-character-listp (double-rewrite acl2::x))
               (iff (base58-character-listp (take acl2::n acl2::x))
                    (or (base58-characterp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-repeat

    (defthm base58-character-listp-of-repeat
      (iff (base58-character-listp (repeat acl2::n acl2::x))
           (or (base58-characterp acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: base58-characterp-of-nth-when-base58-character-listp

    (defthm base58-characterp-of-nth-when-base58-character-listp
      (implies (base58-character-listp acl2::x)
               (iff (base58-characterp (nth acl2::n acl2::x))
                    (< (nfix acl2::n) (len acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-update-nth

    (defthm base58-character-listp-of-update-nth
     (implies
      (base58-character-listp (double-rewrite acl2::x))
      (iff (base58-character-listp (update-nth acl2::n acl2::y acl2::x))
           (and (base58-characterp acl2::y)
                (or (<= (nfix acl2::n) (len acl2::x))
                    (base58-characterp nil)))))
     :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-butlast

    (defthm base58-character-listp-of-butlast
      (implies (base58-character-listp (double-rewrite acl2::x))
               (base58-character-listp (butlast acl2::x acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-nthcdr

    (defthm base58-character-listp-of-nthcdr
      (implies (base58-character-listp (double-rewrite acl2::x))
               (base58-character-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-last

    (defthm base58-character-listp-of-last
      (implies (base58-character-listp (double-rewrite acl2::x))
               (base58-character-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-remove

    (defthm base58-character-listp-of-remove
      (implies (base58-character-listp acl2::x)
               (base58-character-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: base58-character-listp-of-revappend

    (defthm base58-character-listp-of-revappend
      (equal (base58-character-listp (revappend acl2::x acl2::y))
             (and (base58-character-listp (list-fix acl2::x))
                  (base58-character-listp acl2::y)))
      :rule-classes ((:rewrite)))