• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • C
      • Proof-checker-array
      • Soft
      • Farray
      • Rp-rewriter
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Ethereum
      • Leftist-trees
      • Java
      • Riscv
      • Taspi
      • Bitcoin
      • Zcash
      • Des
      • X86isa
      • Sha-2
      • Yul
        • Transformations
        • Language
          • Abstract-syntax
            • Escape
            • Swcase-list->value-list
            • Hex-digit-list->chars
            • Fundef-list->name-list
            • Literal
            • Path
            • Hex-string-rest-element
            • Plain-string
            • String-element
            • Hex-string-content-option
            • Hex-string-content
            • Identifier
            • Funcall-option
            • Expression-option
            • Statement-option
            • Literal-option
            • Identifier-option
            • Hex-string
            • Hex-quad
            • Hex-digit
            • Hex-pair
            • Data-value
            • Data-item
            • Statements-to-fundefs
            • String-element-list-result
            • Identifier-identifier-map-result
            • Swcase-result
            • String-element-result
            • Statement-result
            • Literal-result
            • Identifier-set-result
            • Identifier-result
            • Identifier-list-result
            • Fundef-result
            • Funcall-result
            • Expression-result
            • Escape-result
            • Path-result
            • Block-result
            • Objects
            • Statements/blocks/cases/fundefs
            • Identifier-list
            • Identifier-set
            • Identifier-identifier-map
            • Identifier-identifier-alist
            • Hex-string-rest-element-list
              • Hex-string-rest-element-list-fix
              • Hex-string-rest-element-list-equiv
              • Hex-string-rest-element-listp
                • Hex-string-rest-element-listp-basics
              • String-element-list
              • Path-list
              • Hex-digit-list
              • Literal-list
              • Fundef-list
              • Expressions/funcalls
              • Abstract-syntax-induction-schemas
            • Dynamic-semantics
            • Concrete-syntax
            • Static-soundness
            • Static-semantics
            • Errors
          • Yul-json
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Axe
        • Poseidon
        • Where-do-i-place-my-book
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Community
      • Std
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Hex-string-rest-element-listp

    Hex-string-rest-element-listp-basics

    Basic theorems about hex-string-rest-element-listp, generated by std::deflist.

    Definitions and Theorems

    Theorem: hex-string-rest-element-listp-of-cons

    (defthm hex-string-rest-element-listp-of-cons
      (equal (hex-string-rest-element-listp (cons acl2::a acl2::x))
             (and (hex-string-rest-elementp acl2::a)
                  (hex-string-rest-element-listp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-cdr-when-hex-string-rest-element-listp

    (defthm
     hex-string-rest-element-listp-of-cdr-when-hex-string-rest-element-listp
     (implies (hex-string-rest-element-listp (double-rewrite acl2::x))
              (hex-string-rest-element-listp (cdr acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-when-not-consp

    (defthm hex-string-rest-element-listp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (hex-string-rest-element-listp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-elementp-of-car-when-hex-string-rest-element-listp

    (defthm
     hex-string-rest-elementp-of-car-when-hex-string-rest-element-listp
     (implies (hex-string-rest-element-listp acl2::x)
              (iff (hex-string-rest-elementp (car acl2::x))
                   (consp acl2::x)))
     :rule-classes ((:rewrite)))

    Theorem: true-listp-when-hex-string-rest-element-listp-compound-recognizer

    (defthm
      true-listp-when-hex-string-rest-element-listp-compound-recognizer
      (implies (hex-string-rest-element-listp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: hex-string-rest-element-listp-of-list-fix

    (defthm hex-string-rest-element-listp-of-list-fix
      (implies (hex-string-rest-element-listp acl2::x)
               (hex-string-rest-element-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-sfix

    (defthm hex-string-rest-element-listp-of-sfix
      (iff (hex-string-rest-element-listp (sfix acl2::x))
           (or (hex-string-rest-element-listp acl2::x)
               (not (setp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-insert

    (defthm hex-string-rest-element-listp-of-insert
      (iff (hex-string-rest-element-listp (insert acl2::a acl2::x))
           (and (hex-string-rest-element-listp (sfix acl2::x))
                (hex-string-rest-elementp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-delete

    (defthm hex-string-rest-element-listp-of-delete
      (implies (hex-string-rest-element-listp acl2::x)
               (hex-string-rest-element-listp (delete acl2::k acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-mergesort

    (defthm hex-string-rest-element-listp-of-mergesort
      (iff (hex-string-rest-element-listp (mergesort acl2::x))
           (hex-string-rest-element-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-union

    (defthm hex-string-rest-element-listp-of-union
      (iff (hex-string-rest-element-listp (union acl2::x acl2::y))
           (and (hex-string-rest-element-listp (sfix acl2::x))
                (hex-string-rest-element-listp (sfix acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-intersect-1

    (defthm hex-string-rest-element-listp-of-intersect-1
      (implies
           (hex-string-rest-element-listp acl2::x)
           (hex-string-rest-element-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-intersect-2

    (defthm hex-string-rest-element-listp-of-intersect-2
      (implies
           (hex-string-rest-element-listp acl2::y)
           (hex-string-rest-element-listp (intersect acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-difference

    (defthm hex-string-rest-element-listp-of-difference
      (implies
           (hex-string-rest-element-listp acl2::x)
           (hex-string-rest-element-listp (difference acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-duplicated-members

    (defthm hex-string-rest-element-listp-of-duplicated-members
      (implies
           (hex-string-rest-element-listp acl2::x)
           (hex-string-rest-element-listp (duplicated-members acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-rev

    (defthm hex-string-rest-element-listp-of-rev
      (equal (hex-string-rest-element-listp (rev acl2::x))
             (hex-string-rest-element-listp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-append

    (defthm hex-string-rest-element-listp-of-append
      (equal (hex-string-rest-element-listp (append acl2::a acl2::b))
             (and (hex-string-rest-element-listp (list-fix acl2::a))
                  (hex-string-rest-element-listp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-rcons

    (defthm hex-string-rest-element-listp-of-rcons
      (iff (hex-string-rest-element-listp (rcons acl2::a acl2::x))
           (and (hex-string-rest-elementp acl2::a)
                (hex-string-rest-element-listp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-elementp-when-member-equal-of-hex-string-rest-element-listp

    (defthm
     hex-string-rest-elementp-when-member-equal-of-hex-string-rest-element-listp
     (and (implies (and (member-equal acl2::a acl2::x)
                        (hex-string-rest-element-listp acl2::x))
                   (hex-string-rest-elementp acl2::a))
          (implies (and (hex-string-rest-element-listp acl2::x)
                        (member-equal acl2::a acl2::x))
                   (hex-string-rest-elementp acl2::a)))
     :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-when-subsetp-equal

    (defthm hex-string-rest-element-listp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (hex-string-rest-element-listp acl2::y))
                    (equal (hex-string-rest-element-listp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (hex-string-rest-element-listp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (hex-string-rest-element-listp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-set-difference-equal

    (defthm hex-string-rest-element-listp-of-set-difference-equal
      (implies (hex-string-rest-element-listp acl2::x)
               (hex-string-rest-element-listp
                    (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-intersection-equal-1

    (defthm hex-string-rest-element-listp-of-intersection-equal-1
      (implies (hex-string-rest-element-listp (double-rewrite acl2::x))
               (hex-string-rest-element-listp
                    (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-intersection-equal-2

    (defthm hex-string-rest-element-listp-of-intersection-equal-2
      (implies (hex-string-rest-element-listp (double-rewrite acl2::y))
               (hex-string-rest-element-listp
                    (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-union-equal

    (defthm hex-string-rest-element-listp-of-union-equal
     (equal
         (hex-string-rest-element-listp (union-equal acl2::x acl2::y))
         (and (hex-string-rest-element-listp (list-fix acl2::x))
              (hex-string-rest-element-listp (double-rewrite acl2::y))))
     :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-take

    (defthm hex-string-rest-element-listp-of-take
      (implies
           (hex-string-rest-element-listp (double-rewrite acl2::x))
           (iff (hex-string-rest-element-listp (take acl2::n acl2::x))
                (or (hex-string-rest-elementp nil)
                    (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-repeat

    (defthm hex-string-rest-element-listp-of-repeat
      (iff (hex-string-rest-element-listp (repeat acl2::n acl2::x))
           (or (hex-string-rest-elementp acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-elementp-of-nth-when-hex-string-rest-element-listp

    (defthm
     hex-string-rest-elementp-of-nth-when-hex-string-rest-element-listp
     (implies (hex-string-rest-element-listp acl2::x)
              (iff (hex-string-rest-elementp (nth acl2::n acl2::x))
                   (< (nfix acl2::n) (len acl2::x))))
     :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-update-nth

    (defthm hex-string-rest-element-listp-of-update-nth
      (implies (hex-string-rest-element-listp (double-rewrite acl2::x))
               (iff (hex-string-rest-element-listp
                         (update-nth acl2::n acl2::y acl2::x))
                    (and (hex-string-rest-elementp acl2::y)
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (hex-string-rest-elementp nil)))))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-butlast

    (defthm hex-string-rest-element-listp-of-butlast
     (implies (hex-string-rest-element-listp (double-rewrite acl2::x))
              (hex-string-rest-element-listp (butlast acl2::x acl2::n)))
     :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-nthcdr

    (defthm hex-string-rest-element-listp-of-nthcdr
      (implies (hex-string-rest-element-listp (double-rewrite acl2::x))
               (hex-string-rest-element-listp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-last

    (defthm hex-string-rest-element-listp-of-last
      (implies (hex-string-rest-element-listp (double-rewrite acl2::x))
               (hex-string-rest-element-listp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-remove

    (defthm hex-string-rest-element-listp-of-remove
      (implies (hex-string-rest-element-listp acl2::x)
               (hex-string-rest-element-listp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: hex-string-rest-element-listp-of-revappend

    (defthm hex-string-rest-element-listp-of-revappend
      (equal (hex-string-rest-element-listp (revappend acl2::x acl2::y))
             (and (hex-string-rest-element-listp (list-fix acl2::x))
                  (hex-string-rest-element-listp acl2::y)))
      :rule-classes ((:rewrite)))